GCAPS: GPU Context-Aware Preemptive Priority-
based Scheduling for Real-Time Tasks

Yidi Wang, Cong Liu, Daniel Wong, Hyoseung Kim

University of California, Riverside

[TH RIVERSIDE
e

-
Challenges

c Offload a task
= Challenge 1: Prior work models the GPU as a “black box” 1 e

Get results
= “Once we offload task to GPU, it will run somehow”
= No fine-grained control over GPU HW/SW

GPU

= Challenge 2: Approaches for GPU tasks with End-to-End Timing Constraints

Vanilla GPU driver (Nvidia, AMD, etc.): Synch.-based approach (RT community):
= Unpredictable GPU workload interleaving = Run one task at a time on the GPU
mp No end-to-end guarantees mp Long waiting time

»Some efforts on preemptive X Significant user program rewriting
GPU scheduling X Neglected CPU — GPU interaction

7/8/24 2

e
Related Work

= Synchronization-based GPU access control (= non-preemptive)
= GPU is modelled as critical sections [1][2] — Suffers from long blocking time
= Preemptive GPU scheduling
= Decomposes big kernels into smaller segments [3][4] — Requires heavy code modifications
= Hypervisor-based Preemptive GPU scheduling on VMs [5] — Lacking response time analysis
= Microsecond-scale, Reset-based preemption [6] — not applicable to a wide range of apps
= GPU partitioning
= Spatial partitioning of GPU in user-space [7][8] and driver [9] — Works within a single context
| |

GPU scheduling rules
= Unveil GPU scheduling rules for safe GPU management [10] — Falls short in preemptive scheduling

[1] R. Rajkumar, “Real-time synchronization protocols for shared memory multiprocessors,” in Proceedings., 10th International Conference on Distributed Computing Systems. IEEE Computer Society, 1990, pp. 116-117.
[2] B. B. Brandenburg, “The FMLP+: An asymptotically optimal real-time locking protocol for suspension-aware analysis,” in 2014 26th Euromicro Conference on Real-Time Systems. IEEE, 2014, pp. 61-71.

[3] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Rajkumar. RGEM: A responsive GPGPU execution model for runtime engines. RTSS, 2011

[4] H. Zhou, G. Tong, and C. Liu. GPES: a preemptive execution system for GPGPU computing. RTAS, 2015

[5] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru, “Deadline-based scheduling for GPU with preemption support,” in 2018 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2018, pp. 119-130.

[6] M. Han, H. Zhang, R. Chen, and H. Chen, “Microsecond-scale preemption for concurrent GPU-accelerated DNN inferences,” in 16" USENIX Symposium on Operating Systems Design and Implementation (OSDI 22)

[7]1 S. K. Saha, Y. Xiang, and H. Kim. STGM: Spatio-temporal GPU management for real-time tasks. RTCSA, 2019

[8] Y. Wang, M. Karimi, Y. Xiang, and H. Kim, “Balancing energy efficiency and real-time performance in GPU scheduling,” in 2021 IEEE Real-Time Systems Symposium (RTSS), 2021

[9] J. Bakita and J. H. Anderson, “Hardware Compute Partitioning on NVIDIA GPUs,” in IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2023.

[10] J. Bakita and J. H. Anderson, “Demystifying NVIDIA GPU Internals to Enable Reliable GPU Management”, in ,” in IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2024.

7/8/24 3

-
Motivational Example

] Pure CPU or GPU segment [l GPU misc. exec. [| Runlist update

Response time of 71: 6.75

Core 1 { T1 % Y
Sync.-based approach (e 2 { £
T3 7R W

(}P[J{ __E | | | === | | | |
0 1 2 3 4 5 6 7 8 9 10 11 12 13

\ 4

\ 4

\ 4

\ 4

Response time of 7 : 3.5 + 2¢

mp No blocking time for

Core 1 { 7 % 1% ; high-priority task
GCAPS approach Core 2 { ™ ZUTRE] >
7s z z : w7z,
(}P[J{ ==l >

o 1 2 3 4 5 6 7 8 9 10 11 12 13

7/8/24 4

Our Contributions

No blocking Task priority Analyzable Inter-GPU
respected response time | context
Prior Work | Unmanaged GPU X X v v
Sync.-based approaches X v v v
GPU partitioning v X v X
P Preemptive GPU__ _ _ | _ _ _ AR S Vool X o
: Proposed GCAPS v v v v :

= GCAPS: GPU Context-Aware Preemptive Priority-based Scheduling Approach for
Real-Time Tasks
= A novel approach to manage GPU task preemption.

= First work to provide response time analysis for preemptive GPU scheduling approach as well
as the default GPU round-robin scheduling approach.

7/8/24 5

NVIDIA Jetson Xavier

NX Dev Kit

7/8/24

\

—_— o o o o o o o o o,

7’

“Black Box” Area

Unveiling the “Black Box”: Driver

P
GPU Software - Hardware

Stack

Application Level

User-level

Tekelelels scheduler

User-level libraries

System Software Level /

Runtime
APls

Drivers

Hardware Level

GPU Cores Memory

~

LN\

7/

[\
l
|
|
l

" The default Tegra GPU driver
= TSG: Time-Sliced Group

= Runlist is populated with entries
of TSGs

Employs a time-sliced round-robin
scheduling approach, aiming at fairness

— /'

TSG: time-sliced GPU
x No priority-respected

x No real-time responsiveness

6

v

-
System Model

= Partitioned multiprocessor scheduling

= The process (task) can either busy-wait or self-suspend during GPU execution

= Each tafDCAi»/Gi» Ti»@‘ic»nig)\>

CPU WCET GPU WCET Period <= Deadline # of CPU segs # of GPU segs
= j-th GPU segment G; ; == (G}, G;])

o

Misc. GPU WCET Pure GPU WCET

| CPU exec. [} Pure GPU exec. - GPU misc. exec.

B Gi1

C; cm

m{ :::::::::l:::l:::: l b1
async data copy | = ; . >
Lo) mﬁ\[. ot |

e
7/8/24 Giq 7

e
GCAPS Scheduler Overview

" Enabling preemption Wt MR preemption
= Two User-level macros to mark the boundaries CPU | Ciall|Cra Cho Cio ‘
of GPU execution i
% % %
= |OCTL commands wrapped in the macros to GPU Gy By b R
update runlist < 20 lines code for the macros in userspace ' ' ' '
I IO
int task_function() {
CPU/GPU Interaction RL (Runlist)

gcapsGpuSegBegin(fd, getpid());
cudaMemcpyAsync(d_in, h_in, mem_size_in, Civ = Gr+:T:'s TSG added to RL.

cudaMemcpyHostToDevice, stream); n L1 L1 o -
MyKernel<<<grid, threads, 0, stream>>>(d_in,

d out); n Cph1 — Gpq: Cpq made “add” req.
cudaMemcpyAsync(h_out, d_out, mem_size_in, Since r, > 1y, only T is kept in RL.
cudaMemcpyHostToDevice, stream); _ o
gcapsGpuSegEnd(fd, getpid()); m Gpq — Cpo: Cpp made “rm” req. -

T;’s TSG added back to RL.
Gi;1 — Cpy: Gy 1 made “rm” req.

7/8/24 8

e
Overhead

= Definition 1 (GPU context switch overhead). The GPU context switch overhead,

0, is the time required to switch from the GPU context of one process to that of
another process.

mm) This overhead is inherent to the default round-robin GPU scheduling approach.

= Definition 2 (Runlist update delay). The runlist update delay, €, is defined as the
sum of the time it takes to complete our TSG scheduler (represented by a,
including the cost for IOCTL system call, TSG scheduling algorithm, and runlist
update) and the resulting GPU context switching overhead (€). Hence, € = 06 + «.

mm) GCAPS introduces an extra overhead of a, to complete the proposed scheduler.

7/8/24 9

-
GCAPS Context Switching Procedures

Ty | T
| 10CTLcall+Alg.1 |
: | v | L. .
exec“t'”gl | Reconstruct RL on sw | G, 1 arriving = GCAPS preemption is realized by
"""" Swapthe$RLbuffer . reconstructing RL (runlist).
T T Wrtenew R Bbuffer 1 * The work of 7; is preempted, not
'|_addr. to RL hw addr. | “aborted”.
. v . | executing
[Write RL config to hw | " T; resumes execution after 7y
Wait for finish yields the GPU.
| | '

executingl . Sqm%§t€p§ _______ i

7/8/24 10

Response Time Breakdown

Worst-case response time of atask7;: R; = C; + G; + IiC + I,G

Response time of 71 : 3.5 + 2¢ 7;’sown CPU & GPU Interference from

execution other tasks
Core 1 { T1 %‘\ W R
{ 7 n 1 ,
Core 2 0 B B B g
™Al . - EE
GPU{ === >
0 1 2 3 4 5 6 7 8 9 10 11 12 13
1. CPU Interference I¢ 2. GPU Interference IY
+ Default RR & GCAPS: Preemption Pf » Default RR: Interleaved execution I;¢
 GCAPS: BIOCking BlC due to runlist e GCAPS: Direct preemption Ildp
update - Default RR & GCAPS: Indirect delay I}¢

due to busy-waiting

7/8/24 11

Analysis: Default RR Scheduling

A

GPU interleaved execution I¢

Core 1 {7‘1

- iti V,
% busy-waiting //

v: # of GPU-using tasks
|

T9 busy-waiting , ‘
Core 2 o v] tsg2 tsg2
T? : - / Round-Robin S = -_.

3 N7 . — Y
GPU { A i/ L = time slice length 8 = GPU context-switch overhead
= n&T . g i
----------------- " - m) /°= 27‘:17(|{k|rk # 17, Anj > 0}],Gf;), where I(v,Gf;) = (L +6)-v- [T]]

= Busy-waiting mode
= GPU indirect delay Il-id =y] -Z}’El(ﬂ{k | 7 # hpp(t;) Anp > 0UT_h}|,Gf)

(extra delay imposed on CPU due to busy-waiting GPU segments)

= Self-suspension mode
= GPU indirect delay Il-id =0 See the paper for details on other delay factors

7/8/24 12

R;
ThERPD (T)AN} >0 [Th

Analysis: GCAPS

. . dp
busy- (
Corel{rl 7] waiting GPU direct preemption /[,

N

e: runlist update delay (incl. GPU ¢/s overhead)
T2 ! ——

—_ : 7 - Preemptive
core . - A priority-based | 65 | « [6e] | a3
>

v

\)

T eees / G{": inflated kernel execution time

e 2 R: R: _|_]g
................... > dp _ E Ll rex E L h|.r ex
- = [Th o * [Th ‘ o

ThE hpp(T;) Th€ hp(t)ATREhpp(T;)
ANT>0N nf>0\ Ay >onn?>o \

HP tasks on the same core HP tasks on different cores

= Busy-waiting mode
= GPU indirect delay Il-id =

Ri+Jp] cer
ThE hp(T)ATRERPP (TN >0ANT =0 | T}, h

= Self-suspension mode
= GPU indirect delay Il-id =0 See the paper for details on other delay factors

7/8/24 13

-
Assigning Separate GPU Segment Priority

CPU = GPU Priority: T4 > T3 > 13 = Assigning separate priority to the GPU

Core 1 = e] : segment qf a tagk, different from it§ .OS-
b L@ o level priority to improve schedulability.
Core 2 i @ b = We adopt Audsley’s approach:
GPU il : " : = |f a taskset is not schedulable, we iterate
- — through the CPU priorities from low to high to
Saved T3 from long waiting see whether it can be assigned to the GPU
CPU # GPU Priority: T3 > T > T3 segments of a task.
Core 1 J{ 7, @ [: = To avoid deadlock:
Ty |) = We maintain the relative priority order of GPU
Core2 |1 4] @l f : " segments identical to their OS-level priority.
-13 T- ' ' .
 EEE— 1 1 1 >
GPU ‘[| SRR X

7/8/24 14

e
Evaluation

= Experiment setup
= NVIDIA Jetson Xavier NX running L4T R35.2.1 with Jetpack 5.0.2

= Scheduling approaches

" Proposed preemptive approach: GCAPS (suspend, busy)
= Default GPU Round-Robin approach (suspend, busy)

FMLP+' (suspend, busy)
* Synchronization-based approach: 7 mMpcp2? (suspend, busy)

= Tasks
Task Workload

1 histogram

2 mmul_ gpu_ 1

3 mmul_cpu

4 projection

5 dxtce [1] Bjorn B Brandenburg. The FMLP+: An asymptotically optimal real-time locking protocol for suspension-aware

6 1 9 analysis. In 2014 26th Euromicro Conference on Real-Time Systems, pages 61-71. IEEE, 2014.
mmul_gpu__ [2] Pratyush Patel, lljoo Baek, Hyoseung Kim, and Ragunathan Rajkumar. Analytical enhancements and practical

4 simpleTextureSD (graphic app) insights for MPCP with self-suspensions. In IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2018.
7/8/24 15

Experimental Results: Real System (1)

" Overhead Measurement

Overhead per TSG context switching (0) Distribution of overhead per runlist update (€)
500 400
400 Max: 1021, Min: 38
? Ef 300 Avg: 421, Mid: 508
= 300 2 8
O | =) 200 1 We choose 1000 us
£ 20077 2-"" TS 5 for GCAPS
3 1001 7 - We choose 200 us = 100+
for default RR 0 1
0- ' - / - - - .
Task 1 Task2 Task4 Task5 Task6 0 200 400 600 800 1000 1200
Time (us)
> 200 us Acceptable;

Not trivial, especially for long-running tasks GCAPS schedulability still outperforms

= Parameter selection in evaluations:

= Runlist Update Overhead 6: 1 ms

= TSG context switching overhead €: 200 us
7/8/24 16

Experimental Results: Real System (2)

200

—_
)]
o

MORT (ms)

N
o

—
N
o

o
o

= Response time comparison

= Self-suspension mode as an example

* Benchmarks from CUDA Sample and Rodinia

Maximum observed response time

gcaps_suspend
{ 7772 tsg rr suspend
77z fmlp+ suspend

Slightly sacrificed
best-effort tasks ™

Reduced response time
for high-priority tasks

A Y

10 UL

Task 1 Task 2 Task 3 Task4 Task 5 Task 6
()\

7

J

| ||
Real-time tasks

7/8/24

Best-effort tasks

Response Time (ms)

[\®)
o
o

—_
()]
)

—_
[\
o

0
o

S
o

Measured response time distribution

gcaps_suspend |

Lower variability, better predictability

tsg rr suspend
fmlp+ suspend

- :
A

Task 1 Task 2 Task3 Task4 Task5 Task 6

\ J \ J
| |

Real-time tasks Best-effort tasks

17

Experimental Results: Real System (3)

= Effectiveness of the proposed analysis
= Comparison of MORT (ms) and WCRT (ms)

Task tsg_rr_suspend tsg_rr busy gcaps_ suspend gcaps__busy
MORT WCRT | MORT WCRT | MORT WCRT | MORT WCRT
1 45.33 60 26.13 60 10.15 16 9.68 16
2 66.97 73.6 44.47 73.6 22.36 32 23.28 32
3 71.84 76 | 109.14 129.2 67.39 75 85.01 111
4 86.50 98.2 75.64 192.2 43.17 59 44.91 59
5 86.62 127.8 | 117.68 Failed 49.24 79 57.93 79

All WCRT >= MORT

o First work to bound response time for preemptive GPU tasks and the default GPU

round-robin scheduling approach.

7/8/24 18

Experimental Results: Schedulability (1)

= We generated 1000 tasksets for each setting

= Taskset parameters are adopted from [1] with slight changes

Variable number of tasks Variable task utilization per CPU
100 1 100 1
—e— gcaps_suspend gcaps_suspend
|+ gcaps_busy | Up to 40% I:: gcaps_busy
8 80 1 —e— tsg_rr_suspend X 80 1 schedulab Illty —e— tsg rr suspend
> —e— tsg 1T _busy > . —e— tsg 1T _busy
= 60 - —e— fmlp+ suspend = 60 - Improvement —e— fmlp+ suspend
"g —eo— fmlp+ busy "g —o— fmlp+ busy
g 404 —&— mpcp_suspend g my —&— mpcp_suspend
> —e— mpcp busy O —e— mpcp_ busy
< < &h
&) &)
v 20 - v 20 - \.\
e
0 T T T T T T T 0 T T T T T
2 4 6 8 10 12 14 16 18 20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Number of tasks Utilization per CPU

[1] P. Patel, I. Baek, H. Kim, and R. Rajkumar, “Analytical enhancements and practical insights for MPCP with self-suspensions,” in IEEE Real- Time and Embedded Technology and Applications
Symposium (RTAS), 2018.

7/8/24 19

jorities

9
suspend

suspend
7
7777 busy

busy

ity (2)

N \ A
VA "

Number of CPUs
'Rati.o of.besl.:-eff'ort t'asks.

suspend

suspend
busy
busy

Schedulab

722
Y,
22
O,

ith and without separate GPU pr

ity assignment

Utilization per CPU
Ratio of GPU exec. to CPU exec.

16 18 20

busy

77 suspend
7777 suspend
7777 busy

Y,

=
s g
=
R
>
O
(D)
i
O
wn
wn
Q
"
©
()
| -
@)
k=
=
()
=
)
O
r.n_lu
G
()]
i)
(e
(D)
-
()
>
(@]
| -
o
£
S
i
_I

Number of tasks

imental Results

Ratio of GPU-using tasks

15
0
15
0

Exper

= Effect of separate GPU segment prior
= Compare baseline analysis of GCAPS w

20

7/8/24

-
Summary

= GCAPS: GPU Context-Aware Preemptive Priority-based Scheduling
Approach for Real-Time Tasks
" A novel approach to manage GPU task preemption.

" First work to bound response time for preemptive GPU scheduling approach as
well as the default GPU round-robin scheduling approach.

" Experiments show the effectiveness of our approach in predictability and
responsiveness over the default driver and prior works.

= OQur work is open-source at: https://github.com/rtenlab/gcaps-super-repo

7/8/24 21

https://github.com/rtenlab/gcaps-super-repo

Thank You

GCAPS: GPU Context-Aware Preemptive Priority-based
Scheduling for Real-Time Tasks

