
Yidi Wang, Cong Liu, Daniel Wong, Hyoseung Kim

University of California, Riverside

GCAPS: GPU Context-Aware Preemptive Priority-
based Scheduling for Real-Time Tasks

Challenges
§ Challenge 1: Prior work models the GPU as a “black box”

§ “Once we offload task to GPU, it will run somehow”
§ No fine-grained control over GPU HW/SW

§ Challenge 2: Approaches for GPU tasks with End-to-End Timing Constraints

7/8/24 2

Vanilla GPU driver (Nvidia, AMD, etc.):
§ Unpredictable GPU workload interleaving

No end-to-end guarantees Long waiting time

Synch.-based approach (RT community):
§ Run one task at a time on the GPU

Some efforts on preemptive
GPU scheduling

Significant user program rewriting
Neglected CPU – GPU interaction

Related Work
§ Synchronization-based GPU access control (= non-preemptive)

§ GPU is modelled as critical sections [1][2] – Suffers from long blocking time

§ Preemptive GPU scheduling
§ Decomposes big kernels into smaller segments [3][4] – Requires heavy code modifications
§ Hypervisor-based Preemptive GPU scheduling on VMs [5] – Lacking response time analysis
§ Microsecond-scale, Reset-based preemption [6] – not applicable to a wide range of apps

§ GPU partitioning
§ Spatial partitioning of GPU in user-space [7][8] and driver [9] – Works within a single context

§ GPU scheduling rules
§ Unveil GPU scheduling rules for safe GPU management [10] – Falls short in preemptive scheduling

7/8/24 3

[1] R. Rajkumar, “Real-time synchronization protocols for shared memory multiprocessors,” in Proceedings., 10th International Conference on Distributed Computing Systems. IEEE Computer Society, 1990, pp. 116–117.
[2] B. B. Brandenburg, “The FMLP+: An asymptotically optimal real-time locking protocol for suspension-aware analysis,” in 2014 26th Euromicro Conference on Real-Time Systems. IEEE, 2014, pp. 61–71.
[3] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Rajkumar. RGEM: A responsive GPGPU execution model for runtime engines. RTSS, 2011
[4] H. Zhou, G. Tong, and C. Liu. GPES: a preemptive execution system for GPGPU computing. RTAS, 2015
[5] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru, “Deadline-based scheduling for GPU with preemption support,” in 2018 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2018, pp. 119–130.
[6] M. Han, H. Zhang, R. Chen, and H. Chen, “Microsecond-scale preemption for concurrent GPU-accelerated DNN inferences,” in 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22)
[7] S. K. Saha, Y. Xiang, and H. Kim. STGM: Spatio-temporal GPU management for real-time tasks. RTCSA, 2019
[8] Y. Wang, M. Karimi, Y. Xiang, and H. Kim, “Balancing energy efficiency and real-time performance in GPU scheduling,” in 2021 IEEE Real-Time Systems Symposium (RTSS), 2021
[9] J. Bakita and J. H. Anderson, “Hardware Compute Partitioning on NVIDIA GPUs,” in IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2023.
[10] J. Bakita and J. H. Anderson, “Demystifying NVIDIA GPU Internals to Enable Reliable GPU Management”, in ,” in IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2024.

Motivational Example

Response time of : 3.5 + 2

Core 1

Core 2

GPU
10 11 12 130 1 2 3 4 5 6 7 8 9

7/8/24 4

GPU misc. exec.Pure CPU or GPU segment Runlist update

No blocking time for
high-priority task

Response time of : 6.75

Core 1

Core 2

GPU
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Sync.-based approach

GCAPS approach

Our Contributions
No blocking Task priority

respected
Analyzable
response time

Inter-GPU
context

Prior Work Unmanaged GPU ╳ ╳ ✓ ✓
Sync.-based approaches ╳ ✓ ✓ ✓
GPU partitioning ✓ ╳ ✓ ╳
Preemptive GPU ✓ ✓ ╳ ✓

Proposed GCAPS ✓ ✓ ✓ ✓

7/8/24 5

§ GCAPS: GPU Context-Aware Preemptive Priority-based Scheduling Approach for
Real-Time Tasks
§ A novel approach to manage GPU task preemption.
§ First work to provide response time analysis for preemptive GPU scheduling approach as well

as the default GPU round-robin scheduling approach.

Unveiling the “Black Box”: Driver
§ The default Tegra GPU driver

§ TSG: Time-Sliced Group
§ Runlist is populated with entries

of TSGs

7/8/24 6

NVIDIA Jetson Xavier
NX Dev Kit

Employs a time-sliced round-robin
scheduling approach, aiming at fairness

GPU Software - Hardware
Stack

System Software Level
Runtime

APIs Drivers

Application Level

Task code User-level
scheduler

User-level libraries

Hardware Level

GPU Cores Memory“B
la

ck
 B

ox
”

Ar
ea

No priority-respected

No real-time responsiveness

tsg1

time slice

tsg2 tsg3 …tsg1 tsg2 tsg3

TSG: time-sliced GPU

Runlist

System Model
§ Partitioned multiprocessor scheduling
§ The process (task) can either busy-wait or self-suspend during GPU execution
§ Each task 𝜏 ≔ (𝐶!, 𝐺!, 𝑇!, 𝐷!, 𝜂!", 𝜂!

#)

§ j-th GPU segment 𝐺!,% ≔ (𝐺!,%&, 𝐺!,%')

7/8/24 7

GPU

CPU 𝜏!

CPU exec. GPU misc. exec.Pure GPU exec.

𝐶!,# 𝐺!,#$
𝐺!,#

𝐶!,%
…

𝐺!,#&

async data copy
& kernel launch sync. point

CPU WCET GPU WCET Period <= Deadline # of CPU segs # of GPU segs

Misc. GPU WCET Pure GPU WCET

GCAPS Scheduler Overview
§ Enabling preemption

§ Two User-level macros to mark the boundaries
of GPU execution

§ IOCTL commands wrapped in the macros to
update runlist

7/8/24 8

int task_function() {
...
gcapsGpuSegBegin(fd, getpid());
cudaMemcpyAsync(d_in, h_in, mem_size_in,
cudaMemcpyHostToDevice, stream);
MyKernel<<<grid, threads, 0, stream>>>(d_in,
d_out);
cudaMemcpyAsync(h_out, d_out, mem_size_in,
cudaMemcpyHostToDevice, stream);
gcapsGpuSegEnd(fd, getpid());
...

}

𝐶!,#𝐶$,#

𝐺$,% 𝐺!,%𝐺!,%

𝐶!,%

GPU

CPU 𝐶$,%

𝜏! 𝜏"

I II III IV

preemption

CPU/GPU Interaction RL (Runlist)

I 𝑪𝒍,𝟏 → 𝑮𝒍,𝟏: 𝜏)’s TSG added to RL.

II 𝑪𝒉,𝟏 → 𝑮𝒉,𝟏: 𝐶+,# made “add” req.
Since 𝜋+ > 𝜋), only 𝜏+ is kept in RL.

III 𝑮𝒉,𝟏 → 𝑪𝒉,𝟐:	𝐶+,% made “rm” req.
𝜏)’s TSG added back to RL.

IV 𝑮𝒍,𝟏 → 𝑪𝒍,𝟐: 𝐺),# made “rm” req.

𝑇𝑆𝐺! …

𝑇𝑆𝐺" …

𝑇𝑆𝐺! …

< 20 lines code for the macros in userspace

Overhead
§ Definition 1 (GPU context switch overhead). The GPU context switch overhead,
𝜽, is the time required to switch from the GPU context of one process to that of
another process.

§ Definition 2 (Runlist update delay). The runlist update delay, 𝝐, is defined as the
sum of the time it takes to complete our TSG scheduler (represented by α,
including the cost for IOCTL system call, TSG scheduling algorithm, and runlist
update) and the resulting GPU context switching overhead (𝜃). Hence, 𝜖 = 𝜃 + 𝛼.

7/8/24 9

This overhead is inherent to the default round-robin GPU scheduling approach.

GCAPS introduces an extra overhead of 𝛼, to complete the proposed scheduler.

GCAPS Context Switching Procedures

§ GCAPS preemption is realized by
reconstructing RL (runlist).

§ The work of 𝜏1 is preempted, not
“aborted”.

§ 𝜏1 resumes execution after 𝜏2
yields the GPU.

7/8/24 10

𝜏1 𝜏2
executing

executing

Reconstruct RL on sw

Swap the RL buffer

Write new RL buffer
addr. to RL hw addr.

Write RL config to hw

Wait for finish

Same steps

executing

IOCTL call + Alg. 1

𝝐
𝐺$,% arriving

Response Time Breakdown

7/8/24 11

Response time of : 3.5 + 2

Core 1

Core 2

GPU
10 11 12 130 1 2 3 4 5 6 7 8 9

Worst-case response time of a task 𝜏!: 𝑹𝒊 = 𝑪𝒊 + 𝑮𝒊 + 𝑰𝒊𝑪 + 𝑰𝒊𝑮

𝜏#’s own CPU & GPU
execution

Interference from
other tasks

1. CPU Interference 𝑰𝒊𝑪
• Default RR & GCAPS: Preemption 𝑃#$
• GCAPS: Blocking 𝐵#$	due to runlist

update

2. GPU Interference 𝑰𝒊𝑮
• Default RR: Interleaved execution 𝐼##%
• GCAPS: Direct preemption 𝐼#

&'
• Default RR & GCAPS: Indirect delay 𝐼##&

due to busy-waiting

Analysis: Default RR Scheduling

§ Busy-waiting mode
§ GPU indirect delay 𝐼##& = ∑$!∈"&& $" ∧(!

#)*
+"
,!

⋅ ∑-./
(!
#

ℐ 𝑘	 𝜏0 ≠ ℎ𝑝𝑝 𝜏# ∧ 𝜂0
1 > 0 ∪ 𝜏_ℎ |, 𝐺",-3)

 (extra delay imposed on CPU due to busy-waiting GPU segments)

§ Self-suspension mode
§ GPU indirect delay 𝐼##& = 0

7/8/24 12

𝐼##3 = ∑-./
("
#

ℐ 𝑘|𝜏0 ≠ 𝜏# ∧ 𝜂0
1 > 0 , 𝐺#,-3 , where ℐ 𝑣, 𝐺#,-3 ≔ 𝐿 + 𝜃 ⋅ 𝑣 ⋅

4",%
&

5

GPU interleaved execution 𝐼!!'

tsg1 tsg2 tsg3 …tsg1 tsg2 tsg3

𝑣: # of GPU-using tasks

Work-conserving
Round-Robin

𝜃	= GPU context-switch overhead𝐿	= time slice length

See the paper for details on other delay factors

Analysis: GCAPS

§ Busy-waiting mode
§ GPU indirect delay 𝐼##& = ∑&6∈	$) &7 ∧&6∉$)) &7 ∧,6

8-.∧	,7
8/.

07126
8

36
⋅ 𝐺$4∗

§ Self-suspension mode
§ GPU indirect delay 𝐼##& = 0

7/8/24 13

GPU direct preemption 𝐼!
56

𝐺%4 𝐺#4𝜖𝐺#4 𝜖

𝜖: runlist update delay (incl. GPU c/s overhead 𝜃)	

𝐼#
9& = =

$!∈	"&& $"
∧	(!

#)*∧	("
#)*

𝑅#
𝑇"

⋅ 𝐺"3∗ + =
$!∈	"& $" ∧$!∉"&& $"

∧(!
#)*∧	("

#)*

𝑅# + 𝐽"
1

𝑇"
⋅ 𝐺"3∗	

Preemptive
Priority-based

HP tasks on the same core HP tasks on different cores

𝐺64∗: inflated kernel execution time

See the paper for details on other delay factors

Assigning Separate GPU Segment Priority

§ Assigning separate priority to the GPU
segment of a task, different from its OS-
level priority to improve schedulability.

§ We adopt Audsley’s approach:
§ If a taskset is not schedulable, we iterate

through the CPU priorities from low to high to
see whether it can be assigned to the GPU
segments of a task.

§ To avoid deadlock:
§ We maintain the relative priority order of GPU

segments identical to their OS-level priority.

7/8/24 14

𝜏(
𝜏)

𝜏*
1

2

busy-
waitingCore 1

Core 2

GPU

𝜏(
𝜏)

𝜏* 1

2

busy-
waiting

Core 1

Core 2

GPU

Saved 𝝉𝟑 from long waiting

CPU = GPU Priority: 𝝉𝟏 > 𝝉𝟐 > 𝜏.

CPU ≠ GPU Priority: 𝝉𝟐 > 𝝉𝟏 > 𝜏.

Evaluation
§ Experiment setup

§ NVIDIA Jetson Xavier NX running L4T R35.2.1 with Jetpack 5.0.2

§ Scheduling approaches
§ Proposed preemptive approach: GCAPS (suspend, busy)
§ Default GPU Round-Robin approach (suspend, busy)

§ Synchronization-based approach:

§ Tasks

7/8/24 15

[1] Björn B Brandenburg. The FMLP+: An asymptotically optimal real-time locking protocol for suspension-aware
analysis. In 2014 26th Euromicro Conference on Real-Time Systems, pages 61–71. IEEE, 2014.
[2] Pratyush Patel, Iljoo Baek, Hyoseung Kim, and Ragunathan Rajkumar. Analytical enhancements and practical
insights for MPCP with self-suspensions. In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2018.

FMLP+¹ (suspend, busy)
MPCP² (suspend, busy)

Experimental Results: Real System (1)
§ Overhead Measurement

7/8/24 16

Overhead per TSG context switching (𝜽) Distribution of overhead per runlist update (𝝐)

> 200 us
Not trivial, especially for long-running tasks

Acceptable;
GCAPS schedulability still outperforms

We choose 200 us
for default RR

We choose 1000 us
for GCAPS

§ Parameter selection in evaluations:
§ Runlist Update Overhead 𝜃: 1 ms
§ TSG context switching overhead 𝜖: 200 us

Experimental Results: Real System (2)
§ Response time comparison

§ Self-suspension mode as an example
§ Benchmarks from CUDA Sample and Rodinia

7/8/24 17

Maximum observed response time Measured response time distribution

Reduced response time
for high-priority tasks

Slightly sacrificed
best-effort tasks

Lower variability, better predictability

Real-time tasks Best-effort tasks Real-time tasks Best-effort tasks

Experimental Results: Real System (3)
§ Effectiveness of the proposed analysis

§ Comparison of MORT (ms) and WCRT (ms)

7/8/24 18

o First work to bound response time for preemptive GPU tasks and the default GPU
round-robin scheduling approach.

All WCRT >= MORT

Experimental Results: Schedulability (1)

7/8/24 19

Variable number of tasks Variable task utilization per CPU

Up to 40%
schedulability
improvement

§ We generated 1000 tasksets for each setting
§ Taskset parameters are adopted from [1] with slight changes

[1] P. Patel, I. Baek, H. Kim, and R. Rajkumar, “Analytical enhancements and practical insights for MPCP with self-suspensions,” in IEEE Real- Time and Embedded Technology and Applications
Symposium (RTAS), 2018.

Experimental Results: Schedulability (2)
§ Effect of separate GPU segment priority assignment
§ Compare baseline analysis of GCAPS with and without separate GPU priorities

7/8/24 20

This improvement effectively increases schedulability.

Summary
§ GCAPS: GPU Context-Aware Preemptive Priority-based Scheduling

Approach for Real-Time Tasks
§ A novel approach to manage GPU task preemption.
§ First work to bound response time for preemptive GPU scheduling approach as

well as the default GPU round-robin scheduling approach.
§ Experiments show the effectiveness of our approach in predictability and

responsiveness over the default driver and prior works.

§ Our work is open-source at: https://github.com/rtenlab/gcaps-super-repo

7/8/24 21

https://github.com/rtenlab/gcaps-super-repo

7/8/24 22

Thank You
GCAPS: GPU Context-Aware Preemptive Priority-based

Scheduling for Real-Time Tasks
Yidi Wang, Cong Liu, Daniel Wong, Hyoseung Kim

University of California, Riverside

