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Abstract
Scheduling real-time tasks that utilize GPUs with analyzable guarantees poses a significant challenge
due to the intricate interaction between CPU and GPU resources, as well as the complex GPU
hardware and software stack. While much research has been conducted in the real-time research
community, several limitations persist, including the absence or limited availability of GPU-level
preemption, extended blocking times, and/or the need for extensive modifications to program code.
In this paper, we propose GCAPS, a GPU Context-Aware Preemptive Scheduling approach for
real-time GPU tasks. Our approach exerts control over GPU context scheduling at the device
driver level and enables preemption of GPU execution based on task priorities by simply adding
one-line macros to GPU segment boundaries. In addition, we provide a comprehensive response
time analysis of GPU-using tasks for both our proposed approach as well as the default Nvidia GPU
driver scheduling that follows a work-conserving round-robin policy. Through empirical evaluations
and case studies, we demonstrate the effectiveness of the proposed approaches in improving taskset
schedulability and response time. The results highlight significant improvements over prior work as
well as the default scheduling approach, with up to 40% higher schedulability, while also achieving
predictable worst-case behavior on Nvidia Jetson embedded platforms.
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1 Introduction

Real-time cyber-physical systems with GPU workloads have become increasingly prevalent in
various domains including self-driving cars, autonomous robots, and edge computing nodes.
This trend has been accelerated in recent years by the demand for learning-enabled components
as most of their implementations heavily rely on the GPU stack. The scheduling problem
of GPU-using tasks in these systems is therefore crucial to ensure timely execution and to
meet stringent timing requirements. One of the key challenges here is effectively supporting
prioritization and preemption, allowing higher-priority tasks to interrupt and supersede
lower-priority GPU tasks whenever needed. This is particularly important in scenarios
where critical high-priority tasks with stringent deadlines need to access GPU resources,
while low-priority and best-effort tasks can tolerate such preemption to accommodate their
execution.
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As of yet, the default scheduling policy of commercial GPU devices provides little control
over the prioritization and preemption of GPU access segments of tasks, causing unpredictable
task response time and instability in real-time systems. The real-time research community
has recognized this issue since the early era of GPU computing and has proposed several
solutions. In particular, the use of real-time synchronization protocols, such as MPCP [20, 21]
and FMLP+ [10], has been recognized as a promising way to manage GPU tasks in real-time
systems with strong analyzable guarantees on the worst-case task response time. However,
these approaches can suffer from long blocking time and priority inversion by lower-priority
tasks since GPU segments are handled non-preemptively. There have been attempts to
support priority-based GPU scheduling with preemption capabilities [6, 17, 31], but they
require significant modifications to GPU access code, lack analytical support, and more
importantly, may not work properly if the system has processes with unmodified GPU code
or graphics applications due to the time-shared GPU context switching behavior of the device
driver [4, 11].

In this paper, we address the aforementioned challenges and limitations by proposing
GCAPS, GPU Context-Aware Preemptive Scheduling, for real-time GPU task execution in
multi-core systems with analyzable guarantees. Our work focuses on Nvidia GPUs, especially
those on Tegra System-on-Chips (SoCs) used in embedded platforms like Jetson Xavier and
Orin running L4T (Linux for Tegra). The proposed approach works at the device driver level,
and unlike existing techniques, they can protect the execution of real-time GPU processes
from interference from best-effort non-real-time CUDA processes and graphics processes in
the system. Specifically, compared to the existing approaches to enable GPU preemption, our
approach requires minimum modifications to the user-level GPU access code, i.e., adding just
one macro at the boundaries of GPU segments, but provides more fine-grained and efficient
control of the GPU. This is particularly appealing to recent machine learning and computer
vision applications as they are built on top of massive libraries that involve hundreds of
different kernels. Thanks to the strictly preemptive and priority-driven GPU scheduling
behavior, the proposed approach is analyzable and allows us to derive response-time tests for
schedulability analysis.

In summary, the paper makes the following contributions:

We propose a novel GPU context-aware preemptive priority-driven GPU scheduling approach
for a multi-core system equipped with an Nvidia GPU. This approach not only enables
GPU segments to be executed according to their task priority (especially important when
task priority is assigned based on criticality), but also provides a way to assign different
priorities to GPU segments, which yields a significant benefit in schedulability.
We present a comprehensive analysis on the worst-case task response time under our
proposed approach. In particular, our analysis considers both self-suspension and busy-
waiting modes during GPU kernel execution, as well as the overhead caused by GPU context
switching, which has been neglected in the literature. We also analyze the response time of
a GPU-using task under the vanilla Nvidia Tegra GPU driver that follows a work-conserving
round-robin policy.
Our work is implemented on the latest Nvidia Tegra driver and will be open-sourced.
1. Experimental results show that our approaches bring substantial benefits in taskset
schedulability compared to previous synchronization-based approaches. A case study on
Jetson Xavier and Orin platforms demonstrates the effectiveness of our work over the

1 Available at https://github.com/rtenlab/gcaps-super-repo

https://github.com/rtenlab/gcaps-super-repo


Y. Wang, C. Liu, D. Wong, and H. Kim 11:3

default GPU driver and the applicability to various generations of GPU architectures.

2 Background on Tegra GPU Scheduling

Computational GPU workloads for Nvidia GPUs are often programmed using the CUDA
library. These workloads are represented in kernels and user-level processes can launch
kernels to the GPU at runtime. CUDA provides processes with streams to enable concurrent
execution of kernels with a limited number of stream priority levels, e.g., only 2 in the Pascal
architecture [30].

Since streams are bound to a user-level process that created them, the effect of stream
scheduling and stream priority assignment is exerted only within each process boundary.
The CUDA library is not a must for processes to access the GPU hardware. There are other
low-level libraries for general-purpose GPU computing and graphics applications such as
OpenCL and Vulkan. Programs built using different libraries co-exist in the system and they
send GPU commands to the device driver.
Time-shared scheduling. At the device driver level, each process is associated with a
GPU context, which represents a virtual address space and other runtime states on the GPU
side. Any process accessing the GPU has a separate GPU context, regardless of whether it
uses the CUDA library or not in the user space, and GPU contexts from different processes
are time-sliced to share the GPU hardware.

To ensure fairness and prevent resource contention, the Tegra GPU driver uses a scheduling
policy that assigns entries in the “runlist”. 2 The entries of the runlist represent the allocation
of time slices to TSGs (Time-Sliced Groups [5]) that are directly associated with processes.
Each TSG has multiple “channels”, each of which contains a stream of GPU commands
received from its process. The runlist is populated with entries of TSGs, as depicted in Fig. 1.
Each TSG entry maintains state attributes like the process ID, a list of channels, and the
allocated time slice.
Runlist construction. The runlist is constructed by processes submitting commands to
their respective TSG channels. Specifically, as commands are submitted, TSG entries are
added to the runlist, which is managed under a mutex lock to prevent race condition. The
device driver can assign priority to TSGs, and TSGs with higher driver-level priority are
allocated larger time slices and more entries on the runlist. Following its construction, the
runlist is scheduled by the GPU in a round-robin fashion, where each TSG entry’s commands
are executed for up to its time slice before moving to the next entry. This procedure continues
until all commands of all active TSGs on the runlist have been executed.

As of this writing, there is no interface provided to the user to configure the length of
time slices or the TSG priority setting. We have observed that the latest Tegra driver uses
the same length of time slices for all TSGs, implying that the default scheduling policy of
the driver focuses on ensuring fairness across different processes accessing the GPU.
GPU context switching. Moving from one TSG to another on the runlist causes GPU
context switching. The major contributors to GPU context switching overhead are register
file saving and cache flushing, the former taking much longer than CPUs due to the GPU’s
large register files [24].3 In addition, extra delay may occur because Nvidia GPUs support

2 In fact, there are multiple runlists but we refer to them as singular for simplicity. Each runlist corresponds
to a specific hardware engine, such as copy engine or graphic engine. By default, every process maintains
a single TSG entry on each runlist for storing the commands to be executed by that respective engine.
This configuration does not impact the structure of our proposed design.

3 Since the Pascal architecture, Nvidia GPUs use demand paging for GPU memory management. Thus,
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tsg1

time slice

tsg2 tsg3

runlist tsg1 tsg2 tsg3 ...

…

Attributes:
• pid
• list of channels
• timeslice
• …

tsg1 tsg2 tsg3

Figure 1 Runlist and time-sliced GPU scheduling

No
blocking

Task priority
respected

Analyzable
response time

Inter-GPU
context

Prior
Work

Unmanaged GPU
(default driver) ✕ ✕ ✓ ✓

Sync.-based approaches
[12–14, 20] ✕ ✓ ✓ ✓

GPU partitioning
[4, 16, 23, 26, 27, 29, 32] ✓ ✕ ✓ ✕

Preemptive GPU
[6, 11, 15, 17, 31] ✓ ✓ Unknown ✓

Ours GCAPS ✓ ✓ ✓ ✓

Table 1 Comparison of different GPU scheduling approaches

preemption at the pixel level for graphics tasks and the thread-block level for compute
tasks [2]. In the case of data copy operations, data is divided into smaller chunks and
preemption occurs at the boundary of each chunk [11]. Such delay is however very small
compared to the length of GPU kernels, and for compute tasks, it can be separately measured
or estimated by the maximum length of a single thread block among all kernels. Hence, we
define the following term:

§ Definition 1 (GPU context switch overhead). The GPU context switch overhead, θ, is the
time required to switch from the GPU context of one process to that of another process,
including all the aforementioned delay factors.

Prior work [11] reports that GPU context switching can take from 50 to 750 µs, which
can be estimated by considering the GPU cache size and memory access latency. Our
measurements in Sec. 7.2 show similar results, and our analysis in Sec. 6 accounts for this
overhead with θ.

In summary, the Tegra GPU driver employs a time-sliced round-robin scheduling approach.
This approach, however, does not respect the OS-level scheduling priority of processes, which
is the main control knob to tune real-time performance in practice. This led to diminished
responsiveness in high-priority real-time tasks whenever the system accommodated new
low-priority or best-effort tasks. In addition, it is not easy for the user to observe such
driver-level behavior because GPU profiling tools, such as Nvidia Nsight Systems, do not
report GPU context switching events and each kernel execution time appears to be inflated
with no time slice information. These issues contribute to difficulties in understanding and
predicting the runtime behavior of GPU-enabled real-time systems.

the GPU memory of a context is not swapped out during GPU context switching, regardless of whether
the GPU is integrated or discrete.
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3 Related Work

Table 1 gives a summary of comparison between representative GPU scheduling approaches.
Below we discuss prior work in various categories.

Synchronization-based GPU access control. Real-time synchronization protocols have
played an important role in managing access to GPUs [12–14, 20]. With this approach,
GPUs are modeled as mutually-exclusive shared resources and tasks are made to acquire
locks to enter code segments accessing the GPUs, i.e., critical sections. MPCP [21] and
FMLP+ [10] are prime examples for multi-core systems with GPUs and the use of such
protocols enables analytically provable worst-case task response time bounds. However, as
we discussed in Sec. 2, those works overlooked the inherent TSG context switching overhead.
Another drawback is that the synchronization-based approach may suffer from blocking time
from lower-priority tasks holding a lock and priority inversion caused by the priority boosting
mechanism employed in these protocols [18]. This becomes particularly problematic when
tasks busy-wait on long kernel execution, as discussed in [20].

Preemptive GPU scheduling. Several previous studies [6, 17, 31] have proposed software-
based mechanisms to enable preemptive scheduling of real-time GPU tasks. These approaches
introduce the concept of decomposing long-running GPU kernels into smaller blocks, allowing
preemption to occur at the boundaries of these blocks. By enabling preemptive scheduling,
the waiting time of high-priority tasks can be significantly reduced, improving responsiveness
and offering a better chance to meet timing requirements. However, the cost of utilizing these
mechanisms is not trivial as they necessitate a significant rewriting of user programs [6] or an
implementation of a custom CUDA library with device driver modifications [6, 31]. Capodieci
et al. [11] proposed a hypervisor-based technique to support preemptive Earliest Deadline
First (EDF) GPU scheduling of virtual machines (VMs) in a virtualized environment. This
approach achieves GPU performance isolation among VMs and shares some similarities
with our work, in terms of controlling GPU context switching at the device driver level.
However, it lacks consideration of the end-to-end response time of tasks involving CPU
and GPU interactions, which is a specific focus of our work. Recently, Han et al. [15]
proposed REEF, which enables microsecond-scale, reset-based preemption for concurrent
DNN inferences on GPUs. This approach proactively kills and restarts best-effort kernels
leveraging the idempotent nature of most DNN inference, but it is not applicable to a wide
range of applications.

GPU partitioning. As a GPU is composed of multiple compute units, e.g., Streaming
Multiprocessors (SMs) on Nvidia GPUs, there have been attempts to spatially partition the
GPU and make them accessible by multiple real-time tasks in parallel [16, 23, 26, 27, 32]. They
use SM-centric kernel transformation [29] to run kernels on their designated SMs/partitions.
As this involves extensive program modifications and may suffer from misbehaving tasks,
Bakita and Anderson [4] recently proposed a user-space library that minimizes program
changes and offers much better usability and portability. With GPU partitioning, task
performance is greatly affected by partitioning results, e.g., a high-priority task may suffer
performance degradation due to the small number of SMs assigned to it or experience blocking
if its SMs are shared with other tasks. In addition, all these approaches work within a single
GPU context, i.e., one process; hence, multiple processes with separate contexts will still
time-share the GPU, as discussed in Sec. 2. Note that our work does not compete with
GPU partitioning techniques. They can be used within each process and our work enables
predictable scheduling of GPU processes.

ECRTS 2024
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4 System Model

We consider a multi-core system with a GPU, which is common in today’s embedded hardware
platforms like Nvidia Jetson. The CPU has ω identical cores and the GPU is yet another
processing resource used by compute-intensive tasks. The GPU consists of internal resources
including Execution Engines (EEs) and Copy Engines (CEs). The EE and CE operations of
a single process can be done asynchronously at runtime, and during pure GPU execution, the
process can either busy-wait or self-suspend on the CPU. However, different processes cannot
use the GPU at the same time because of the time-sharing scheduling of GPU contexts at
the GPU device driver, as discussed before.
Task Model. We consider a taskset Γ consisting of n sporadic tasks (processes) with
fixed priority and constrained deadlines.4 Out of these, ng tasks require GPU operations.
Each task is assumed to be preallocated to one CPU core with no runtime migration, i.e.,
partitioned multiprocessor scheduling. The execution of a task is an alternating sequence
of CPU segments and GPU segments. CPU segments run entirely on the CPU and GPU
segments involve GPU operations such as memory copy and kernel execution. A task τi can
be characterized as follows:

τi :“ pCi, Gi, Ti, Di, ηc
i , ηg

i , πiq

Ci: the cumulative sum of the worst-case execution time (WCET) of all CPU segments of
task τi.
Gi: the cumulative WCET of GPU segments (including memory copies and kernels) of τi.
Ti: the minimum inter-arrival time of each job of τi.
Di: the relative deadline of each job of τi, assumed to be smaller than or equal to the
period, i.e., Di ď Ti.
ηc

i : the number of CPU segments in each job of task τi.
ηg

i : the number of GPU segments in each job of task τi; if τi does not use the GPU, ηg
i “ 0.

πi: the priority of task τi.5

CPU

GPU
async data copy
& kernel launch

Pure CPU segment Pure GPU segment GPU misc. exec.

Figure 2 Task model

Fig. 2 depicts these parameters, and by default, in each task, all the segments have the
same priority. Each GPU segment Gi,j

6 can be characterized as follows:

Gi,j :“ pGm
i,j , Ge

i,jq

4 We assume tasks are processes and use them interchangeably in this paper.
5 Our work allows the GPU segments of τi to run with a separate priority from its OS-level process

priority to improve schedulability (explained later in Sec. 5.3). We will use πc
i for CPU segment priority

and πg
i for GPU segment priority. If not specified, πi “ πc

i “ πg
i .

6 Although Tegra GPU supports zero-copy memory transfer, we still include the memory copy in the
diagrams to illustrate the complete process. It is important to note that the choice of using zero-copy
or not does not impact the analysis or the experimental results of this work.
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Listing 1 Example usage of GCAPS macros
1 int task_function () {
2 ...
3 gcapsGpuSegBegin (fd , getpid ()); /* GCAPS: GPU segment begin */
4 cudaMemcpyAsync (d_in , h_in , mem_size_in , cudaMemcpyHostToDevice ,

stream ));
5 MyKernel <<<grid , threads , 0, stream >>>(d_in , d_out);
6 cudaMemcpyAsync (h_out , d_out , mem_size_in , cudaMemcpyHostToDevice ,

stream ));
7 gcapsGpuSegEnd (fd , getpid ()); /* GCAPS: GPU segment finish */
8 ...
9 }

Gm
i,j : the cumulative WCET of miscellaneous CPU operations in the j-th GPU segment of

task τi, Gi,j .
Ge

i,j : the WCET of GPU workload in Gi,j that requires no CPU intervention such as data
copy and kernel execution; and we call it a pure GPU segment.

Gm
i,j is the time for launching a CUDA kernel, overhead for communicating with the GPU

driver, and miscellaneous CPU operations for issuing other GPU commands. Ge
i,j is the

time for GPU data copy and kernel execution, during which task τi can either busy-wait or
self-suspend on the CPU. Note that Gi,j ď Gm

i,j ` Ge
i,j because the worst-case of Gm and Ge

are not necessarily happening on the same control path and they may execute in parallel in
asynchronous mode [20].

5 GCAPS: Priority-based Preemptive GPU Context Scheduling

This section presents our priority-based preemption GPU context-aware scheduling approach.
It involves a set of user-level runtime macros that notify the GPU driver to update the
runlist, and it provides fine-grained control over GPU segments.

5.1 GCAPS Algorithm
We first introduce the high-level scheduling procedures of GCAPS. To implement the approach,
we add two macros that allow user programs to indicate the beginning and completion of a
GPU segment. When the macro is called, it generates an IOCTL command and sends it
to the GPU driver through a file descriptor, and requests the driver to update the runlist
accordingly. While we chose IOCTL as a way to interact with the driver, other methods
could be used as well, such as system calls and procfs/sysfs interfaces.

The macros introduced are gcapsGpuSegBegin() and gcapsGpuSegEnd(), which are
wrappers to our IOCTL syscalls. A sample user program is listed in Listing. 1. The code
between them is a GPU segment. With the help of these two macros, we can let our
driver-level approach know the boundaries of GPU segments and make GPU scheduling
decisions at the right time.

An IOCTL command issued by the macro triggers our TSG scheduler shown in Alg. 1.
To keep track of which tasks are in the runlist and which tasks are pending, two bitfield lists,
task_running and task_pending, are maintained in the GPU driver. When a caller task τi

notifies that it begins its GPU segment through gcapsGpuSegBegin(), the scheduler first
checks whether τi is a real-time task by checking whether the rt_priority field of the task’s
task_struct is set. If it is not, the scheduler checks whether there is any real-time task that
is currently running and decides whether to add τi to the runlist or add it to the pending
list (line 6 to 10). If τi is a real-time task, the scheduler checks the priority of τi relative to
the currently-running highest-priority task τh (τh P task_running ^ τh ‰ τi). If the priority

ECRTS 2024
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Algorithm 1 Priority-based TSG scheduling
1: task_pending “ H

2: task_running “ H

3: Ź Note that a task exclusively exists in one of these two lists
4: procedure TSG_Scheduler(τi, add)
5: if add then Ź τi requests to be added
6: if τi is not a real-time task then
7: if no real-time task is in task_running then
8: Add τi to task_running
9: else

10: Add τi to task_pending

11: else Ź τi is a real-time task
12: τh Ð the highest-priority task in task_running
13: if τi.rt_priority ą τh.rt_priority then
14: Add τi to task_running
15: Move τh to task_pending
16: else
17: Add τi to task_pending

18: else Ź τi requests to be removed
19: τk Ð the highest-priority RT task in task_pending
20: if τk exists then
21: Move τk to task_running
22: Remove τi from task_running
23: else Ź no pending real-time task
24: task_running Ð task_pending
25: task_pending Ð H

26: Add all TSGs of tasks in task_running to the runlist

GPU misc. exec. Runlist updatePure GPU segmentPure CPU segment

Response time of : 6.75

Core 1

Core 2

GPU
0 1 2 3 4 5 6 7 8 9 10 11 12 13

(a) Synchronization-based approach

Response time of : 3.5 + 2

Core 1

Core 2

GPU
10 11 12 130 1 2 3 4 5 6 7 8 9

(b) Proposed approach

Figure 3 Example schedule of three tasks under different approaches (priority τ1 ą τ2 ą τ3)

of τi is higher than τh, the scheduler preempts the GPU execution of τh and moves it to
the pending list, and τi is added to the runlist. Otherwise, τi is added to the pending list
(line 11 to 17). If τi notifies the driver about the completion through gcapsGpuSegEnd(),
the scheduler first finds the highest-priority task τk in the pending list. If τk exists, it is
added to the runlists. Otherwise, if there are only best-effort tasks, the scheduler adds all of
them to the runlist to resume their progress in a time-shared manner (line 18 to 25). At the
end of the scheduler, it directly updates the driver’s runlist based on task_running such
that the TSGs of tasks are dispatched and GPU context switching takes place immediately.
To implement the scheduler, we only added about 300 lines of code in the driver, and 10
lines of code in each userspace macro.

§ Example 1 (Motivational example). Figs. 3 compares task schedules under the conventional
synchronization-based approach and our proposed approach. τ1 is running on Core 1, while
τ2 and τ3 are running on Core 2. The synchronization-based approach shown in Fig. 3a
treats the entire execution of a GPU segment as a critical section. Tasks are serviced in
order based on their task priorities. This approach ensures that each task completes its GPU
segments in a deterministic and predictable manner. However, τ1 is delayed by the GPU
segments of all of its lower-priority tasks and gets a response time of 6.75.

On the other hand, our approach avoids this delay by allowing preemption during GPU
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CPU/GPU Interaction RL (Runlist)

I 𝑪𝒍,𝟏 → 𝑮𝒍,𝟏: 𝜏$’s TSG added to RL. 

II 𝑪𝒉,𝟏 → 𝑮𝒉,𝟏: 𝐶&,' made “add” req. 
Since 𝜋& > 𝜋$, only 𝜏& is kept in RL. 

III 𝑮𝒉,𝟏 → 𝑪𝒉,𝟐:	𝐶&,) made “rm” req. 
𝜏$’s TSG added back to RL.

IV 𝑮𝒍,𝟏 → 𝑪𝒍,𝟐: 𝐺$,' made “rm” req. 

𝑇𝑆𝐺! …

𝑇𝑆𝐺" …

𝑇𝑆𝐺! …

𝐶𝑙,2𝐶$,%

𝐺$,& 𝐺',&𝐺',&

𝐶',&

GPU

CPU 𝐶$,&

𝜏! 𝜏"

I II III IV

preemption

𝜏! 𝜏"

executing

executing

Mutex lock

Reconstruct RL on sw

Write the new buffer 
mem to RL hw address

Write RL config to hw

Mutex unlock

Same steps

executing

IOCTL call + Alg. 1

𝝐(a) Preemption trigger points (Gm is omitted)
CPU/GPU Interaction RL (Runlist)

I 𝑪𝒍,𝟏 → 𝑮𝒍,𝟏: 𝜏$’s TSG added to RL. 

II 𝑪𝒉,𝟏 → 𝑮𝒉,𝟏: 𝐶&,' made “add” req. 
Since 𝜋& > 𝜋$, only 𝜏& is kept in RL. 

III 𝑮𝒉,𝟏 → 𝑪𝒉,𝟐:	𝐶&,) made “rm” req. 
𝜏$’s TSG added back to RL.

IV 𝑮𝒍,𝟏 → 𝑪𝒍,𝟐: 𝐺$,' made “rm” req. 

𝑇𝑆𝐺! …

𝑇𝑆𝐺" …

𝑇𝑆𝐺! …
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𝐺$,& 𝐺',&𝐺',&

𝐶',&

GPU

CPU 𝐶$,&

𝜏! 𝜏"

I II III IV

preemption

𝜏! 𝜏"

executing

executing

Mutex lock

Reconstruct RL on sw

Write the new buffer 
mem to RL hw address

Write RL config to hw

Mutex unlock

Same steps

executing

IOCTL call + Alg. 1

𝝐

(b) GPU/CPU Interaction of Fig. 4a

𝜏!

Reconstruct RL on sw

Swap the RL buffer

Write new RL buffer 
addr. to RL hw addr.

Write RL config to hw

Wait for finish

Same steps

IOCTL call + Alg. 1

𝝐
𝐺
!,#

arriving

𝜏"

executing

executing
executing

(c) Context Switching Details

Figure 4 Preemption by GPU segments and GPU context switching

segment execution. Fig. 3b shows an example schedule under the proposed approach, and
the overhead introduced by our approach is denoted as ϵ, defined as follows.

§ Definition 2 (Runlist update delay). The runlist update delay, ϵ, is defined as the sum of
the time it takes to complete our TSG scheduler (represented by α, including the cost for
IOCTL system call, TSG scheduling algorithm, and runlist update) and the resulting GPU
context switching overhead (θ). Hence, ϵ “ α ` θ.

Unlike the synchronization-based approach, at t “ 3 ´ ϵ, τ1’s GPU segment issues an
IOCTL syscall to notify the driver that its GPU segment is ready to run. It causes preemption
of τ3’s GPU segment by removing its associated TSGs from the runlist, and the GPU is solely
occupied by the highest-priority task in the system, τ1, until it completes. The response
time of τ1 is 3.5 ` 2ϵ, much smaller than that of the synchronization-based approach. This
strategy is followed in the remaining schedule.

5.2 GPU Context Switching Details
This section details the context switching of GPU segments when preemption is triggered.
Fig. 4a shows a schedule of two real-time tasks, where preemption points are marked in red
and the CPU and GPU interactions are marked in blue. Fig. 4b illustrates the runlist status
at each CPU/GPU interaction. Note that, even if the active TSGs of a task are removed
from the runlist, they are kept in the scheduler data structure of the GPU driver and won’t
be lost; hence, we can add those TSGs back to the runlist, e.g., Gh,1 Ñ Ch,2 in Fig. 4b, to
resume their execution.

Fig. 4c illustrates the detailed steps of GPU context switching between τl and τh. The
procedures outlined within the dashed blue block represent the entire cost of preemption
(ϵ). After the IOCTL system call is invoked, Alg. 1 is executed in the driver and it identifies
the ids of all the TSGs for the runlist. To manage concurrent system calls efficiently in our
proposed approach, we replace the default mutex lock in the driver with a real-time mutex,
rt_mutex [22], to reduce the blocking time as well as prevent priority inversion.

Once the new runlist is constructed, the scheduler swaps it with the one currently held
by hardware. This is similar to the well-known double buffering technique. The scheduler
allocates runlist buffers in DMA memory during the driver initialization phase. The size of
each buffer corresponds to the product of the entry size and the number of entries, which
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Task CPU Ti “ Di CPU Segments GPU Segments
τ1 1 80 C1,1 “ 2, C1,2 “ 4, C1,3 “ 3 Gm

1,1 “ 2, Ge
1,1 “ 4, Gm

1,2 “ 2, Ge
1,2 “ 2

τ2 1 150 C2,1 “ 40 -
τ3 2 190 C3,1 “ 4, C3,2 “ 30 Gm

3,1 “ 5, Ge
3,1 “ 80

τ4 1 200 C4,1 “ 16, C4,2 “ 2 Gm
4,1 “ 2, Ge

4,1 “ 10
Table 2 Taskset used in Fig. 5

GPU misc. exec. Runlist updatePure GPU segmentPure CPU segment
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𝜏#

GPU

Core 1

Core 2 𝜏$

Task 4 missed deadline

0 10 20 30 40 7050 60 80 90 100 110 140120 130 170150 160 180 190 200 210 240220 230

(a) CPU priority = GPU priority: τ1 ą τ2 ą τ3 ą τ4. RT test failed.

𝜏!
𝜏"

𝜏#

GPU

Core 1

Core 2 𝜏$

Task 4 met deadline

0 10 20 30 40 7050 60 80 90 100 110 140120 130 170150 160 180 190 200 210 240220 230

(b) CPU priority: τ1 ą τ2 ą τ3 ą τ4; GPU priority: τ1 ą τ2 ą τ4 ą τ3. RT test passed.

Figure 5 Example schedule of assigning separate GPU priority under self-suspension mode

depend on hardware capabilities. For instance, on Nvidia Jetson Xavier NX, each entry
is 16 bytes with 65535 entries in total. Then the runlist buffer to use is submitted to the
hardware. It involves writing the new runlist buffer address to the runlist’s hardware address
and writing the runlist configurations to the hardware registers. During the submission, the
driver polls the hardware and waits until it finishes. After these operations, the new runlist
only contains the TSGs of τh in Fig. 4c, and τh can run in isolation without interference
from τl.

5.3 Separate Priority for GPU Segments
Under the proposed approaches, GPU segments are executed following their OS-level task
priorities by default, and the preemption can occur at segment boundaries.

To improve taskset schedulability, we can assign separate priority to the GPU segments
of a task, different from its CPU priority. In this case, a task τi’s CPU segments and GPU
segments may have different priorities, denoted as πc

i and πg
i respectively. Note that in our

approach, the segments of the same type have the same priority (either πc
i or πg

i ).
We adopt Audsley’s approach for this purpose [3]. Hence, if the schedulability test given

in Section 6 determines a taskset is unschedulable, we iterate through all tasks from the
lowest to the highest CPU priority and check whether each priority level can be assigned
to the GPU segments of a task without causing the taskset to fail the schedulability test.
Allowing different priorities for CPU and GPU segments may cause a deadlock if their
priorities are not coordinated. To prevent deadlocks, we maintain the relative priority order
of GPU segments identical to their corresponding CPU segments (i.e., OS-level priorities) for
tasks executing on the same CPU core. For instance, consider two tasks τ1 and τ2 assigned
to the same CPU, with CPU priority πc

1 ą πc
2. If our algorithm suggests a GPU priority

order where πg
1 ă πg

2 , we treat this assignment as infeasible.
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§ Example 2 (Effect of separate priority for GPU segment). Consider the taskset in Table 2.
Task priority is assigned by the Rate-Monotonic (RM) policy, and CPUs are assigned by
Worst-Fit-Decreasing (WFD) heuristic. The lower the task index, the higher its priority.
The first job of τ3 arrives at time 70, and the other tasks’ jobs arrive at time 0. In Fig. 5a,
each task uses the same priority for its CPU and GPU segments. During the time window
t “ r73, 74s, both Ge

3,1 and Ge
4,1 were ready to begin. Since Ge

3,1 has a higher priority, it
gained GPU access. When Ge

4,1 finished at t “ 187, C4,2 could not start because τ2 is running
on the same CPU. Those delays caused τ4 to miss the deadline.

In Fig. 5b, the priorities of tasks’ CPU segments remain unchanged but we swapped the
GPU priority of τ3 and τ4. Unlike the schedule in Fig. 5a, at t “ 75, Ge

4,1 obtained GPU
access first and τ4 is able to meet the deadline.

This timeline illustrates only one possible scenario. We evaluated this taskset using the
proposed response time analysis detailed in Sec. 6.3. The results show that the priority
assignment in Fig. 5a failed the test while the priority assignment in Fig. 5b passed the test.

To implement this approach, we allow our macros to take one extra argument, which
is the user-defined GPU segment priority: gcapsGpuSegBegin(fd, getpid(), gprio) and
gcapsGpuSegEnd(fd, getpid(), gprio). In Alg. 1, we change line 12, line 13 and line 19
to decide whether a task’s TSG should be in the runlist or not based on tasks’ GPU segment
priorities, i.e., gprio.

6 End-to-End Response Time Analysis

This section presents a comprehensive analysis of the end-to-end response time of tasks
involving CPU and GPU interactions for both the round-robin approach of the default
Nvidia Tegra driver and our proposed priority-based GPU context scheduling approach. The
applicability of the proposed analysis is not limited to integrated GPUs with shared memory
architecture such as Jetson series. As explained in Sec. 5.2, only the runlist buffer is swapped
during context switches and the GPU memory of a preempted task is not swapped out.

6.1 Response Time Breakdown
Before proceeding to the individual analysis for each scheduling approach, we first present
the components that account for the overall response time. For a task τi, its worst-case
response time can be upper-bounded by:

Ri :“ Ci ` Gi ` IC
i ` IG

i (1)

Ci and Gi stand for the computation requirement of τi’s CPU and GPU segments. IC
i

and IG
i are the interference τi can experience due to CPU segments and GPU segments,

respectively. The interference due to CPU segments, IC
i , consists of two main components:

(i) preemption from higher-priority tasks on the same core (P C
i ), and (ii) blocking due to

runlist updates in our approach (BC
i ). These components will be explained later in Sec. 6.3.

The total CPU interference is expressed by:

IC
i :“ P C

i ` BC
i (2)

As for the interference from GPU segments, IG
i , we break it down into the following

components:
Direct Preemption (Idp

i ). Direct preemption occurs under the proposed approach when a
task’s GPU segment execution gets preempted by a higher-priority GPU segment, regardless
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of whether the two tasks are running on the same CPU core or not. As an example, Fig. 6a
shows that τ2 gets direct preemption from τ1 under the proposed approach, since they are
contending for the GPU resource.
Indirect Delay (Iid

i ). Indirect delay refers to the delay imposed on the CPU segments of a
task τi due to busy-waiting GPU segments.7 Such busy-waiting is caused by higher-priority
tasks on the same CPU as τi, and the amount of indirect delay imposed on τi is also affected
by GPU-using tasks on different CPU cores. However, indirect delay cannot exist stand-alone.
It is contingent on the presence of direct interference (i.e. direct CPU or GPU preemption)
from a higher-priority GPU-using (ηg

h ą 0) task τh running on the same core as τi.

§ Example 3 (Indirect delay). For the proposed approach, the CPU segment of τ3 in Fig. 6a
shows an example: τ1 preempts τ2’s GPU execution, making τ2’s busy waiting period longer,
and it further delays τ3’s execution. In other words, τ1 indirectly delays τ3 since they are
not directly competing for the same resource. For the default scheduling approach, consider
the taskset in Fig. 6b, with priority of τ2 ą τ1 ą τ3. In this case, τ3 is delayed by the GPU
interleaved execution of τ1 and τ2; thus τ3 is indirectly delayed by τ1 since τ1 and τ3 are not
competing for the same resource.

Interleaved Execution (Iie
i ). The default round-robin scheduling approach adopts a

scheduling strategy of interleaved execution where multiple GPU kernels are executed in
an alternating, overlapped manner, instead of completing one before starting the next, as
discussed in Sec. 2. With this approach, a TSG of a task has to wait for the completion
of the preceding other tasks’ TSGs before it starts, leading to extended execution time of
GPU segments, which are perceived as the prolonged boxes on the timeline in profiling tools.
In the worst case, all the TSGs are active and fully utilize the time slices, and each GPU
segment of a task τi must wait for prior TSGs to finish. This procedure repeats throughout
the entire execution of τi. To model this delay, we consider a TSG time slice length of L,
and Ge

i,j requires at most r
Ge

i,j

L s times of TSG slices and GPU context switches. Assuming
there are ν GPU-using tasks in the system, the maximum delay for each GPU segment of τi

due to interleaved execution is upper bounded by:

Ipν, Ge
i,jq :“ pL ` θq ¨ ν ¨ r

Ge
i,j

L
s (3)

By considering all the above factors, the overall GPU interference of a task τi can be
computed as follows:

IG
i :“ Idp

i ` Iid
i ` Iie

i (4)

6.2 Analysis for Default Round-Robin TSG Scheduling
In the prior literature, the tasks’ response times are typically considered unpredictable under
the default scheduling policy in the GPU driver ([12–14, 18, 20]), and also the tasks’ execution
is graphed as large overlapped boxes in the GPU profiling tools. However, as we have revealed
that the Tegra GPU driver employs a time-sliced round-robin scheduling approach in Sec. 2,
this makes this approach analyzable. In the following analysis, we assume that the default

7 Iid
i is not about the context switching overhead θ (Def. 1), which includes register saving/restoring cost

and extra delay due to pixel-level or thread block-level preemption granularity as discussed in Sec. 2.
The overhead θ (and ϵ “ α ` θ in our approach) will be discussed separately.
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Figure 6 GPU Segment Interference with busy-waiting (Gm and ϵ are omitted for simplicity). The
shaded area indicates the amount of preemption or blocking. (a) Proposed preemptive scheduling:
(πc

i “ πg
i ) π1 ą π2 ą π3. (b) Default round-robin scheduling: τ1 indirectly delays τ3 regardless of

the relative priority of τ1 and τ3. (c) Proposed preemptive scheduling with separate GPU segment
priority assignment: πc

1 ą πc
2 ą πc

3; πg
2 ą πg

1 ą πg
3 .

behavior of the Tegra driver that equally treats all GPU requests from different processes.
This is a reasonable assumption given that the TSG slice and priority configurations are not
exposed to the user and we have not observed changes in those settings, as we discussed
before.

§ Lemma 1 (GPU interleaved execution). Under the default Tegra GPU driver, the worst-case
interference from GPU interleaved execution for a task τi is bounded by:

Iie
i “

η
g
i

ÿ

j“1

Ip|tk | τk ‰ τi ^ ηg
k ą 0u|, Ge

i,jq (5)

Proof. This equation captures the total amount of interference due to the interleaved
execution of any other tasks τk and τi itself. đ

§ Lemma 2 (GPU direct preemption). Under the default Tegra GPU driver, the GPU direct
preemption delay imposed on a real-time task τi is zero, i.e., Idp

i “ 0.

Proof. This follows our definition of direct preemption in Sec. 6.1. With the default driver’s
approach, GPU segments are not preempted, but interleaved. đ

§ Lemma 3 (CPU blocking time). Under the default Tegra GPU driver, the worst-case CPU
blocking time for a task τi is zero, i.e., BC

i “ 0.

Proof. This is obvious since the default driver does not require tasks to explicitly request
for the runlist update. đ

6.2.1 Busy-Waiting Mode
§ Lemma 4 (GPU indirect delay). Under the default Tegra GPU driver with busy-waiting, the
worst-case interference from GPU indirect delay for a task τi is bounded by:

Iid
i “

ÿ

τhPhpppτiq^η
g
h

ą0

r
Ri

Th
s ¨

η
g
h

ÿ

j“1

Ip|tk | τk R hpppτiq ^ ηg
k ą 0 Y τhu|, Ge

h,jq (6)

where hpppτiq is the set of higher-priority tasks running on the same CPU core as τi.

Proof. A task τi experiences indirect delay from each higher-priority task τh busy waiting
on the same CPU during its GPU segment execution (τh P hpppτiq ^ ηg

h ą 0 in the outer
summation). For each τh, we need to bound the maximum busy-waiting period during which
its GPU execution can interleave with any other GPU-using tasks. This can be done by the
summation of Eq. (3) for each GPU segment of τh, Ge

h,j . However, since the busy-waiting
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periods of tasks in hpppτiq, other than τh, have already been accounted for iteratively in
the outer summation, we exclude hpppτiq from the cardinality of the interleaving taskset
considered by Eq. (3), i.e., |tk | τk R hpppτiq ^ ηg

k ą 0 Y τhu|, to prevent double counting. đ

§ Lemma 5 (CPU preemption). Under the default Tegra driver with busy-waiting, the worst-
case interference from CPU preemption is bounded by:

P C
i “

ÿ

τhPhpppτiq

r
Ri

Th
s ¨ pCh ` Gm

h q (7)

Proof. A task τi can only experience interference from CPU preemption from the higher-
priority tasks running on the same CPU core for a duration of Ch ` Gm

h . đ

6.2.2 Self-Suspension Mode
§ Lemma 6 (GPU indirect delay). Under the default Tegra GPU driver with self-suspension,
the worst-case interference from GPU indirect delay for a task τi is zero, i.e., Iid

i “ 0.
Proof. A task with self-suspension would not experience GPU indirect delay as explained in
Sec. 6.1. đ

§ Lemma 7 (CPU preemption). Under the default Tegra driver self-suspension, the worst-case
interference from CPU preemption is bounded by:

P C
i “

ÿ

τhPhpppτiq

r
Ri ` Jc

h

Th
s ¨ pCh ` Gm

h q (8)

where Jc
h “ Rh ´ pCh ` Gm

h q.
Proof. Each job of τh imposes a delay of up to Ch ` Gm

h on τi and the self-suspending
behavior of τh can be captured by a jitter term Jc

h as reported in [9]. đ

6.3 Analysis for Proposed GPU Context Scheduling
Our approach introduces the runlist update delay of ϵ (Def. 2). In the worst case, runlist
updates are required both before and after each GPU segment of τi, since the associated
TSGs need to be added and removed by IOCTL calls as shown in Listing 1. This leads to a
cumulative cost of 2ϵ ¨ ηg

i for the entire job of τi. For ease of presentation, we define G˚
i , Ge˚

i ,
and Gm˚

i to incorporate the two times of runlist updates into the execution requirements.

G˚
i “ Gi ` 2ϵ ¨ ηg

i , Ge˚
i “ Ge

i ` 2ϵ ¨ ηg
i and Gm˚

i “ Gm
i ` 2ϵ ¨ ηg

i

Also, due to the use of rt-mutex in our approach, each GPU segment of τi can experience
blocking time of ϵ when there is an ongoing runlist update initiated by a lower-priority task.

§ Lemma 8 (Blocking time). Under the proposed approach, the worst-case blocking time for
a task τi is bounded by:

BC
i “ pηg

i ` 1q ¨ ϵ (9)

Proof. First, at least one time of the blocking of ϵ applies to every τi, regardless of whether it
is a GPU-using or CPU-only task. This is because it can experience blocking from GPU-using
lower-priority tasks at the very beginning of its job instance, as illustrated by ➀ in Fig. 7.
If τi is a GPU-using task, each GPU segment requires up to ϵ for potential blocking from
lower-priority tasks, which results in ηg

h ¨ ϵ. Therefore, the total amount of blocking imposed
by lower-priority tasks is bounded by pηg

i ` 1q ¨ ϵ. đ
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Core 1
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Pure CPU segment Runlist updatePure GPU segment GPU misc. exec.

Figure 7 Example schedule of three tasks (π1 ą π2 ą π3) with runlist update delay

§ Lemma 9 (Interleaved execution). Under the proposed approach, the interference from
interleaved execution of a real-time task τi is zero, i.e., Iie

i “ 0.

Proof. This is obvious since the GPU segments of real-time tasks are not allowed to execute
in an interleaved manner with our proposed approach. đ

§ Example 4 (Runlist update delay). Fig. 7 can help better understand all types of runlist
update delay under the proposed approach. The task of interest here is τ2 which runs with
medium priority. τ3 triggers runlist update first, and this blocks to τ2’s CPU segment at
➀ and τ1’s runlist update at ➁. Before τ1 finishes GPU execution, τ2 cannot start its GPU
segment as τ1 is actively using the GPU with higher priority than τ2. Then, the start time
of τ2’s GPU segment is delayed by the runlist update at ➂ triggered by τ1 to remove τ1’s
TSG from the runlist.

Based on these observations, we derive the response time analysis of busy-waiting and
self-suspending GPU tasks in the following.

6.3.1 Busy-Waiting Mode

§ Lemma 10 (GPU direct preemption). Under the proposed approach with busy-waiting, the
worst-case interference from GPU direct preemption for a task τi is bounded by:

Idp
i “

ÿ

τhPhpppτiq

^η
g
h

ą0^η
g
i

ą0

r
Ri

Th
s ¨ Ge˚

h `
ÿ

τhPhppτiq^τhRhpppτiq

^η
g
h

ą0^η
g
i

ą0

r
Ri ` Jg

h

Th
s ¨ Ge˚

h (10)

where Jg
h “ Rh ´ Ge

h.

Proof. A task τi can experience direct GPU preemption from a higher-priority task τh

only when both τi and τh are GPU-using tasks (ηg
i ą 0 ^ ηg

h ą 0). We consider the
preemption from: (i) τh on the same core as τi (τh P hpppτiq), and (ii) on different cores
(τh P hppτiq ^ τh R hpppτiq). In both of the cases, the duration of preemption equals to Ge˚

h ,
which includes the pure GPU execution and the runlist update cost of 2ϵ for each of τh’s
GPU segment.

In the case of (ii), a release jitter Jg
h is considered to account for the carry-in effect of

τh’s GPU execution. This is because τh’s job releases are not synchronized with the τi’s job
release, causing carry-in jobs to the window of τi’s response time. It is known that in an
arbitrary time window t, the number of arrivals of a higher-priority task τh with a carry-in
job can be upper-bounded by r

t`Jh

Th
s, where the jitter Jh “ Dh ´ Ch if τh’s response time is

unknown [7], and Jh “ Rh ´ Ch otherwise [19]. đ
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§ Lemma 11 (GPU indirect delay). Under the proposed approach with busy-waiting, the
worst-case interference from GPU indirect delay for a task τi is bounded by:

Iid
i “

ÿ

τhPhppτiq^τhRhpppτiq

^η
g
h

ą0^η
g
i

“0

r
Ri ` Jg

h

Th
s ¨ Ge˚

h (11)

Proof. Under the proposed approach with busy-waiting, a task τi gets GPU indirect delay
when it is preempted by a higher-priority task τh on the same core when τh is busy waiting
on the CPU during its GPU segment execution. During this busy-waiting period, the
higher-priority task τh can experience GPU direct preemption from any higher-priority
GPU-using tasks on different CPUs (τh P hppτiq ^ τh R hpppτiq ^ ηg

h ą 0), and such τh further
increases indirect delay imposed on τi. This happens regardless of whether τi is a CPU-only
or GPU-using task. However, the last term in Eq. (10) has already bounded all the delays
from such τh that τi may experience when τi is a GPU-using task. Therefore, in this lemma,
we only consider the case that τi is a CPU-only task, to prevent double counting. đ

§ Lemma 12 (CPU preemption). Under the proposed approach with busy-waiting, the worst-
case interference from CPU preemption of a task τi is bounded by:

P C
i “

ÿ

τhPhpppτiq

r
Ri

Th
s ¨ pCh ` Gm

h q (12)

Proof. The proof directly follows Lemma 5. đ

6.3.2 Self-Suspension Mode
§ Lemma 13 (GPU direct preemption). Under the proposed approach with self-suspension,
the worst-case interference from GPU direct preemption for a task τi is bounded by:

Idp
i “

ÿ

τhPhpppτiq

^η
g
h

ą0^η
g
i

ą0

r
Ri ` Jg

h

Th
s ¨ Ge

h `
ÿ

τhPhppτiq^τhRhpppτiq

^η
g
h

ą0^η
g
i

ą0

r
Ri ` Jg

h

Th
s ¨ Ge˚

h (13)

Proof. This is a variant of Lemma 10. The difference lies in the first term accounting for
the interference of GPU direct preemption from higher-priority GPU-using task τh on the
same core. τh imposes interference of its pure GPU execution, Ge˚

h , to τi only when τi uses
the GPU (ηg

i ą 0). Here, from the perspective of τi with ηg
i ą 0, the runlist update delay

on the CPU and GPU overlaps, and thus using Ge
h safely bounds GPU preemption from τh.

The self-suspending behavior of τh can be captured by a jitter term, as reported in [9]. The
second term remains the same as in Lemma 10. đ

§ Lemma 14 (GPU indirect delay). Under the proposed approach with self-suspension, the
worst-case interference from GPU indirect delay of a task τi is zero, i.e., Iid

i “ 0.
Proof. This phenomena does not exist under self-suspension mode as explained in Sec. 6.1. đ

§ Lemma 15 (CPU preemption). Under the proposed approach with self-suspension, the
worst-case interference from CPU preemption of a task τi is bounded by:

P C
i “

ÿ

τhPhpppτiq

^η
g
h

“0

r
Ri

Th
s ¨ Ch `

ÿ

τhPhpppτiq

^η
g
h

ą0

r
Ri ` Jc

h

Th
s ¨ pCh ` Gm˚

h q
(14)

Proof. This is a variant of Lemma 12. If τh is a GPU-using task running on the same
core (τh P hpppτiq ^ ηg

h ą 0), each job of τh imposes a delay of up to pCh ` Gm˚
h q and the

self-suspending behavior of τh is accounted for by the jitter term, Jc
h [9]. đ
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6.4 Analysis for GPU Priority Assignment
When the GPU priority assignment given in Sec. 5.3 is used, the amount of preemption
due to higher-priority GPU tasks, i.e., hpppq and hppq, needs to be revisited. Recall that
our assignment preserves the same relative priority order for GPU segments as the CPU
priority order for tasks running on the same core. The meaning of hpppq therefore remains
unchanged. However, hppq needs to be redefined such that it means the set of tasks with
higher “GPU segment” priorities in the system. This is because any interference due to GPU
segment execution (Idp

i and Iid
i ) of Lemma 10, 11 and 13 are now governed by GPU segment

priorities. When computing the release jitter Jx
h , Rh needs to be replaced with Dh since

the worst-case response time of higher-priority tasks is unknown when applying our GPU
priority assignment method. With these simple modifications, our analysis in the previous
section can analyze the effect of the GPU priority assignment.

Besides the benefits introduced in Example 2, the use of separate GPU segment priority
assignment is particularly effective in mitigating the scheduling inefficiency of busy-waiting
as shown in Example 5. Our evaluation results in Sec. 7.1 will confirm this claim.

§ Example 5 (Separate GPU priority assignment under busy-waiting mode). In Fig. 6a, τ3 is
indirectly preempted by τ1 as explained in Sec. 6.1. However, if we consider Fig. 6c where τ2
is assigned a higher GPU priority than τ1, τ3 no longer experiences the delay from τ1’s GPU
segment, thereby achieving a shorter response time.

7 Evaluation

We conduct schedulability experiments to compare the proposed approaches against prior
work and assess the effect of the GPU priority assignment. Then, we present a case study on
two Nvidia embedded platforms.

7.1 Schedulability Experiments
We generated 1,000 random tasksets for each experimental setting based on the parameters in
Table 3. The parameter selection is inspired by the prior work [20], with slight modifications
to increase the system load. Based on the measurement in Sec. 7.2, we aggressively set ϵ to
1 ms for our approaches, while assuming zero overhead for synchronization-based approaches
and setting θ as low as 200µs for TSG context switching in the default round-robin scheduling.
For each task in a taskset, the number of tasks on each CPU is first chosen randomly within
the range, and the utilization per CPU is generated based on the UUniFast algorithm [8].
Then for each task, its period and the number of GPU segments are uniformly randomized
within the given range. Then the parameters for each segment are determined. Task priority
is assigned by the Rate Monotonic (RM) policy. After this, we re-allocate the tasks to the
CPUs for load balancing purpose with WFD (worst-fit decreasing) heuristic.

7.1.1 Comparison with Prior Work
We first compare our proposed approach, GCAPS, with the default TSG round-robin
scheduling as well as two well-known synchronization-based methods, MPCP [20] and
FMLP+ [10], both of which offer suspension-aware and busy-waiting analyses. For default
TSG scheduling, we use the analysis in Sec. 6.2 and set the length of the time slice to 1024
µs since it is the default value set in the driver. For our approach, we use the analysis with
the GPU priority assignment in Sec. 5.3. Hence, we first run the response time test for a
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Figure 8 Schedulability of approaches with different experimental settings

taskset with the default RM priorities, and if the test fails, try again with separate priorities
for GPU segments.

We investigate the impact of varying the number of tasks in the taskset, the number
of CPUs, the utilization per CPU, and the ratio of GPU-using tasks in Figs. 8a, 8c, 8b
and 8d, respectively. The results show that, in general, the gcaps_busy and gcaps_suspend
approaches outperform previous methods.

Fig. 8e examines the effect of changing the ratio of Gi{Ci. When the ratio of Gi{Ci is
small, the proposed approach underperforms fmlp+ and tsg_rr_suspend, because fmlp+
can efficiently schedule tasks when GPU load is light, and the delay caused by TSG context
switching is not significant when the duration of GPU segments are relatively short. The
advantages of our approaches are mitigated by the critical section of runlist updates, but
this trend does not continue as the ratio increases.

Lastly, we explore the impact of best-effort tasks running with the lowest priority in the
system. After generating the tasks using the aforementioned method, we randomly designate
a specific percentage of tasks as best-effort tasks in this experiment. Fig. 8f depicts the
percentage of schedulable tasksets as the ratio of best-effort tasks increases. The rest of
the tasks are all real-time tasks with constraint deadlines. The best-effort tasks contribute
to blocking time in the analysis of mpcp and fmlp+, and share the time-sliced GPU with
real-time tasks in tsg_rr. Since GPU preemption is enabled in our proposed approaches,
they significantly outperform the prior methods.

Parameters Value
Number of CPUs 4
Number of tasks per CPU [3, 6]
Ratio of GPU-using tasks [40, 60] %
Utilization per CPU [0.4, 0.6]
Task Period [30, 500] ms
Number of GPU segments per task [1, 3]
Ratio of GPU exec. to CPU exec. (Gi{Ci) [0.2, 2]
Ratio of GPU misc. in GPU exec. (Gm

i {Gi) [0.1, 0.3]
Runlist update cost (ϵ) 1 ms

Table 3 Parameters for taskset generation
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Figure 9 Schedulability gain in GCAPS by GPU priority assignment

7.1.2 Effect of GPU Priority Assignment

In this experiment, we evaluate the impact of GPU priority assignment on taskset schedula-
bility. We compare baseline analyses of ioctl_busy and ioctl_suspend with and without
separate GPU priorities, using the taskset generation parameters from Table 3. Fig. 9 illus-
trates the advantages of GPU priority assignment. Busy-waiting approaches tend to benefit
more from this assignment, as explained in Section 6.4 of the manuscript. Additionally, both
busy-waiting and self-suspending approaches benefit from it since assigning GPU priorities
independently of CPU priorities makes GPU resource allocation more efficient. E.g. Tasks
with shorter GPU segments or higher GPU urgency can be prioritized appropriately, reducing
resource wastage.

7.2 System Evaluation

We implemented our preemptive GPU scheduling approaches on two Nvidia platforms: the
Nvidia Jetson Xavier NX Development Kit running L4T R35.2.1 with Jetpack 5.0.2 and
the Nvidia Jetson Orin Nano Developer Kit running L4T R35.4.1 with Jetpack 5.1.2. The
first platform features a 6-core 64-bit Carmel ARMv8.2 processor and a Volta architecture
GPU. For our experiments, we configured it to run at its highest frequencies in the 6-core
15W mode. The second platform is equipped with a 6-core Arm Cortex-A78AE v8.2 64-bit
CPU and an Ampere architecture GPU, and we operated it at its peak frequencies under its
default power mode.
Case Study. We conducted a case study on the aforementioned platforms to evaluate
the performance and effectiveness of the proposed preemptive GPU scheduling mechanism.
Table 4 provides a summary of the taskset employed in this study, and we show the tasks’
WCET collected on Jetson Xavier NX. The benchmarks are from Nvidia CUDA Samples [1].

Task Workload Ci Gi Ti “ Di CPU Priority
1 histogram 1 10 100 1 70
2 mmul_gpu_1 2 12 150 2 69
3 mmul_cpu 67 0 200 2 68
4 projection 12 15 300 1 67
5 dxtc 2 16 400 1 66
6 mmul_gpu_2 4 44 200 4 0
7 simpleTexture3D (graphic app) 4 27 67 4,5 0

Table 4 Taskset used in case study
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Figure 10 Maximum observed response time on two platforms
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Figure 11 Observed response time variations on Jetson Xavier

The execution requirements of the tasks (Ci and Gi) are obtained by profiling the benchmarks
and rounding them up. Ti (“ Di) is chosen based on Ci and Gi to ensure task utilization
falls between 0.05 and 0.35. The CPU assignment is based on the consideration of load
balancing.

The tasks in the table are arranged in descending order of priority, and each task’s GPU
segments use the same OS-level priority as its CPU segments. Tasks 3 is a CPU-only task
with Gi “ 0, while the remaining tasks involve GPU computations. Tasks 6 and 7 are
categorized as best-effort tasks, as they are not assigned real-time priority. Task 7 is a
graphic application running at 16 FPS to stress the GPU. To suspend a task during its GPU
execution, we used CUDA events with the cudaEventBlockingSync flag. We compared our
approaches against tsg_rr (default round-robin scheduling in Nvidia GPU driver) and fmlp+
(synchronization-based approach).

We released the tasks at the same time and executed them for a duration of 30s during
which we measured the maximum observed response time (MORT) for each real-time task.
The results are depicted in Fig. 10a. Generally, the proposed approach can provide low
MORT for real-time tasks, particularly for higher-priority tasks such as Task 1 and Task 2.
This indicates that the IOCTL approach prioritizes these tasks effectively. However, it is
apparent that the best-effort tasks, such as Task 6, experience a trade-off, displaying higher
MORT under the proposed approaches than fmlp+. This is also due to the reason that the
low-priority tasks can benefit from the blocking effect under fmlp+ approaches. We omit the
results for task 7 since it is a graphic application and its performance is measured through
FPS. According to our observation, under each scheduling approach, an average FPS of
around 15 can be maintained.

Fig. 11 illustrates the observed response time of each task, with error bars representing
the deviation from the mean; above for "Max-Mean" and below for "Mean-Min" respectively.
The "Average relative range" is calculated as "(Max-Min)/Max" to reflect variability. Both
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Task tsg_rr_suspend tsg_rr_busy gcaps_suspend gcaps_busy
MORT WCRT MORT WCRT MORT WCRT MORT WCRT

1 45.33 60 26.13 60 10.15 16 9.68 16
2 66.97 73.6 44.47 73.6 22.36 32 23.28 32
3 71.84 76 109.14 129.2 67.39 75 85.01 111
4 86.50 98.2 75.64 192.2 43.17 59 44.91 59
5 86.62 127.8 117.68 Failed 49.24 79 57.93 79

Table 5 Comparison of MORT (ms) and WCRT (ms) on Jetson Xavier

ioctl_suspend and ioctl_busy show a tendency to more consistent response times for
real-time higher-priority tasks, as evidenced by more compact error bars in Fig. 11 and small
variability compared to tsg_rr and fmlp+. fmlp+ exhibits higher variability in the observed
response time primarily due to blocking which has significantly increased the response time
for the real-time tasks. Meanwhile, tsg_rr displays medium-sized error bars across the tasks,
due to the use of a fairer allocation of GPU resources but without introducing blocking.

Table 5 lists the comparison of MORT and the worst-case response time (WCRT) bounds
computed using our analysis given in Sec. 6 for the default round-robin scheduling and
our proposed approaches. tsg_rr_busy failed the response time test at Task 5 due to the
conservative nature of the analysis for busy-waiting tasks. The results of fmlp+ are omitted
since the tests failed at Task 1, while we observed no deadline misses for this taskset running
on the real systems. This proves that our proposed preemptive GPU scheduling approach
can offer tighter WCRT bounds for higher-priority tasks.

We run the same experiments on Nvidia Jetson Orin Nano, an embedded GPU platform
with the latest Ampere architecture, and the similar trends of MORT are shown in Fig. 10b.
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Figure 12 Histogram of runlist update overhead

Runlist Update Overhead. We also measured the overhead of runlist update, ϵ (Def. 2),
while running the taskset in the case study. The data and the distribution is shown in
Fig. 12. The lower mode in the distribution indicates requests that do not necessarily require
runlist updates, and it mainly includes the cost of accessing the IOCTL system call. In our
experimental settings, these two boards have similar CPU frequencies at about 1.5GHz while
Jetson Xavier NX has a much higher GPU frequency of 1.1GHz than Jetson Orin Nano’s
625MHz. Both platforms exhibit a maximum overhead of about 1 ms, which is higher than
the range reported in prior work [11]. We suspect this is due to the relatively lower frequency
of our GPUs and it could be optimized in future generations of GPU architectures, as can
be seen with Orin’s case (10% higher overhead despite half the frequency). Nonetheless,
we consider the cost acceptable based on our schedulability experiments conducted with a
similar overhead.
TSG Context Switching Overhead. We designed a separate experiment to measure the
TSG context switching overhead, θ (defined in Sec. 2). The main idea is to use Eq. (3). To
accurately gauge the number of TSGs, we incorporated a dummy loop within each kernel to
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extend the kernel duration so that it ensures that multiple timeslices are required to complete
the execution. We launched different numbers of instances simultaneously of each workload
given in Table. 4. In an ideal scenario, running ν identical kernels concurrently would lead
to a slowdown factor of ν, and we can estimate the TSG context switching overhead based
on the difference between the ideal and the actual slowdown. Specifically, we first measured
the independent completion time of a kernel as E1. We then launched ν identical kernels
simultaneously and recorded the completion time as Eν . This approach allows us to compute
the TSG switching overhead as follows:

θ “
Eν ´ ν ¨ E1

ν ¨ E1
¨ L (15)

where L is set to 1000µs in the default Tegra driver. The task slowdown and the estimated
TSG context switching times are listed in Fig. 13, where both platforms demonstrate an
average TSG context switching overhead greater than 200µs which is not trivial, especially
for long-running kernels. It is worth noting that the overhead on Jetson Orin is lower than
that one Jetson Xavier, which is opposite to the case of runlist update delay (ϵ). This might
be attributed to several factors related to architectural differences that Jetson Orin has a
better pipeline management and a more efficient context-saving mechanism.

Task 1 Task 2 Task 4 Task 5 Task 6
0

100

200

300

400

500

Ti
m

e 
(u

s)

Jetson Xavier Jetson Orin

Figure 13 Avg. Overhead per TSG Context Switching

8 Conclusion

In this paper, we present a preemptive priority-based scheduling approach for GPU-using
tasks in a multi-core real-time system equipped with an Nvidia GPU. We first discussed
how the Nvidia Tegra GPU driver works and presented the design of GCAPS, our priority-
based preemptive GPU context scheduling approach. Then, we provided a comprehensive
response time analysis for both the default round-robin scheduling of the device driver and
our proposed approach. To the best of our knowledge, this was the first attempt to formally
analyze the worst-case response time under the default GPU driver’s time-shared GPU
context scheduling mechanism. Through empirical evaluations, we have demonstrated the
effectiveness of our approach in enhancing schedulability compared to synchronization-based
approaches and the default driver. Additionally, our case study shows the benefits of our
approach in predictability and responsiveness over the default GPU driver and prior work.

Future work can focus on further optimizing and refining the proposed approach and
exploring additional scheduling strategies such as dynamic priority. Combining our device-
driver level approach with GPU partitioning mechanisms will also be an interesting direction.
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