Towards Energy-Efficient Real-Time Scheduling of Heterogeneous Multi-GPU Systems

Yidi Wang, Mohsen Karimi and Hyoseung Kim

University of California, Riverside

IEEE Real-Time Systems Symposium (RTSS) 2022

Motivation

- § In a multi-GPU system, workload allocation methods can be categorized to:
	- Load distribution
		- Idle energy consumption from computing units causes energy inefficiency
	- Load concentration
		- § Different tasks have different *energy-preferred* GPU
- The problem is more complicated in a real-time system
	- Real-time tasks have different arriving patterns with different timing constraints

Related Work

- Real-time GPU Scheduling
	- **Temporal multitasking** 2^3 : focus on the time-sharing of the GPU
		- Poor energy efficiency and lack of support for heterogeneous GPUs
	- Spatial multitasking⁴
		- No consideration of energy efficiency as well as multi-GPUs
- GPU Energy Efficiency⁵⁶⁷
	- Focuses on regulating the number of active SMs
		- Problem: SM-level power gating is not yet available in today's GPUs
- \blacksquare Our previous work sBEET framework⁸
	- Combines spatial and temporal multitasking to balance energy consumption and schedulability
		- We extend this work to a heterogeneous multi-GPU system through offline task allocation and runtime job migration

^[1] G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor systems with GPUs. *Real-Time Systems, 48:34–74*, 05 2012

^[2] H. Kim, P. Patel, S. Wang, and R. Rajkumar. A server-based approach for predictable GPU access control. *RTCSA*, 2017

^[3] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Rajkumar. RGEM: A responsive GPGPU execution model for runtime engines. *RTSS*, 2011

^[4] S. K. Saha, Y. Xiang, and H. Kim. STGM: Spatio-temporal GPU management for real-time tasks. *RTCSA*, 2019

^[5] P. Aguilera, K. Morrow, and N. S. Kim, "QoS-aware dynamic resource allocation for spatial-multitasking GPUs," in *2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC)*, 2014

^[6] Z.-G. Tasoulas and I. Anagnostopoulos, "Improving GPU performance with a power-aware streaming multiprocessor allocation methodology," *Electronics*, vol. 8, no. 12, 2019.

^[7] P.-H. Wang, C.-L. Yang, Y.-M. Chen, and Y.-J. Cheng. Power gating strategies on GPUs. *TACO*, 2011

^[8] Y. Wang, M. Karimi, Y. Xiang, and H. Kim, "Balancing energy efficiency and real-time performance in GPU scheduling," in *2021 IEEE Real-Time Systems Symposium (RTSS)*, 2021

Contributions

We propose sBEET-mg:

 \checkmark An energy-efficient real-time GPU scheduling framework for heterogeneous multi-GPU systems

- Analyzed the power usage characteristics on a multi-GPU system with our customized power monitoring tool
- § Proposed a framework to address the timeliness and energy efficiency simultaneously in a heterogeneous multi-GPU environment
- Developed a custom power monitoring tool that obtains precise power measurements
- The proposed work outperforms the conventional load concentration and distribution approaches in both real hardware and simulation

Proposed Work Overview

- Custom power sensing tool
- Scheduling framework
	- Centralized scheduler (offline task allocation + runtime job migration)
		- One single CUDA context
	- Two worker threads dedicated for each GPU

System Model

- Platform Model
	- A single-ISA system Π consisting with ω heterogeneous GPUs
	- A GPU π_k containing M_k SMs
- Task Model
	- A taskset Γ consists of \boldsymbol{n} periodic GPU tasks:
		- Non-preemptive
		- \blacksquare W/ Constrained deadlines
			- $\tau_i \coloneqq (G_i, T_i, D_i)$

WCET, period, deadline

- Each task τ_i consists of a sequence of jobs $J_{i,j}$
- Each job can execute with a different number of SMs on a different GPU

WCET of a job $J_{i,j}$: $G_{i,j}(m, \pi_k) = G_i^{hd}(\pi_k) + G_{i,j}^e(m, \pi_k) + G_i^{dh}(\pi_k)$

Power and Energy Model

§ Power model

• Power model: $P = P^s + P^d + P^{idle}$

• For a set of jobs
$$
J = \{J_1, J_2, ..., J_n\}
$$
:

$$
P = P^s + \sum_{i=1}^n P_i^d(m_i) + P^{idle}(M - \sum_{i=1}^n m_i)
$$

For a taskset Γ, energy consumption in [t1, t2]:

$$
E_k(t_1, t_2) = \int_{t_1}^{t_2} \left(P_k^S + \sum_{j_i \in J} \left(P_{k,i}^d \left(\sum_{m=1}^{M_k} x_i^m(t) \right) \right) + P_k^{idle} \left(M_k - \sum_{j_i \in J} \sum_{m=1}^{M_k} x_i^m(t) \right) \right) dt
$$

■ Energy consumption of all GPUs:

$$
E([t_1, t_2]) = \sum_{\forall \pi_k \in \Pi} E_k([t_1, t_2])
$$

 $x_i^m(t) = \left\{$ $0, \tau_i$ is not active on SM_k 1 , τ_i is active on SM_k

Insights on Conventional Approaches (1)

■ Baseline Scheduling Approaches

§ **Load Concentration**

■ It assigns a GPU job to the most packed GPU

§ **Load Distribution**

§ It chooses an idling GPU first (or a GPU with the highest number of idling SMs)

Insights on Conventional Approaches (2)

- § Homogeneous GPUs
	- Example 1

Table III: Taskset in Examples 1 and 2

Load concentration is better in this case

Insights on Conventional Approaches (3)

- § Homogeneous GPUs
	- Example 2

Table III: Taskset in Examples 1 and 2

Application $G_i^e(\pi_0,6)$ $G_i^e(\pi_0,4)$ $G_i^e(\pi_0,3)$ $G_i^e(\pi_0,2)$ Task Histogram 32.67 ms 47.95 ms 63.724 ms 95.53 ms $\tau_1=\tau_2$

• Same taskset, but τ_1 executes slightly earlier with 4 SMs

A small difference made load distribution the winner

Insights on Conventional Approaches (4)

- § Heterogeneous GPUs
	- Example 1

Insights on Conventional Approaches (5)

- § Heterogeneous GPUs
	- Example 2

Table IV: Taskset in Example 3 and 4

Task	Application	$G_i^e(30, \pi_0)$	$G_i^e(16, \pi_0)$	$G_i^e(6, \pi_1)$
T ₁	MatrixMul	11.98 ms	21.55 ms	-
T_{2}	Hotspot	12.00 ms	22.31 ms	73.188 ms

Insights on Conventional Approaches (6)

- To improve energy efficiency...
	- § **Neither approaches should be preferred** regardless of whether the GPUs are homogeneous or not
	- § If we can make all tasks on the same GPU finish at similar time, active-idle power consumption of unused SMs can be minimized
	- § **However, it is hard to realize with real-time tasks** since they have different arrival patterns and timing constraints

Energy-Efficient Multi-GPU Scheduling (1)

- Energy Optimality:
	- **Definition 1. (***Energy optimal SMs*) The energy-optimal number of SMs $m_{k,i}^{opt}$, for a task τ_i on a GPU π_k is defined as the number of SMs that leads to the lowest energy consumption when it executes in isolation on the GPU during an arbitrary time interval.
	- **Definition 2. (***Energy preferred GPU*) The energy-preferred GPU for a task τ_i in a multi-GPU system Π is the GPU that consumes the least amount of energy when τ_i executes with $m_{k,i}^{opt}$ SMs on it.

$$
\underset{\pi_k \in \Pi}{\text{argmin}} \int_0^{\delta} P_k^s + P_{k,i}^d(m_{k,i}^{opt}) + P_k^{idle}(M_k - m_{k,i}^{opt}) dt
$$

Energy-Efficient Multi-GPU Scheduling (2)

- § sBEET-mg Overview:
	- Adaptively chooses the GPU and SM configuration of each job of real-time GPU tasks such that it brings the minimum expected energy consumption to all GPUs in the system
- Approach:
	- An offline task distribution algorithm
		- \triangleright As a guideline for the runtime scheduler
	- § A heuristic runtime scheduler
		- \triangleright Two worker threads per GPU to enable parallel execution of jobs
		- ØDecides whether to execute a job on the preassigned GPU or migrate it to another GPU

Energy-Efficient Multi-GPU Scheduling (3)

- § Offline Task Distribution:
	- Main idea: For each task, the algorithm tries to assign it to the energy-preferred GPU
	- Step 1: Sort all tasks in the decreasing order of priority
	- Step 2: For each task, it obtains a list of GPUs in an order of energy-preference
	- Step 3: Simple utilization check for admission
	- Step 3: Assign the unassigned tasks in Step 3 to the GPUs that will have the minimum utilization

Energy-Efficient Multi-GPU Scheduling (4)

- Runtime Job Migration:
	- Main idea: Migrate and pack jobs at runtime to further reduce energy consumption since the GPUs are not SM-level power-gated
	- Decide at runtime:
		- \triangleright Consider the energy consumption of a given job on each GPU
		- \triangleright Choose the one that can meet all deadlines with the minimum predicted energy consumption
		- \triangleright If no GPU can meet the deadline, select the one with the minimum energy consumption

Energy-Efficient Multi-GPU Scheduling (5)

■ Runtime Job Migration – Case Study 1

\checkmark All three jobs are schedulable w/ migration

Energy-Efficient Multi-GPU Scheduling (6)

■ Runtime Job Migration – Case Study 2

Table VIII: Taskset used in case study 2

 \checkmark Energy consumption in two schedules:

- w/o migration 6.51 J
- w/ migration 6.49 J

Evaluation

- § Multi-GPU System
	- \blacksquare NVIDIA RTX3070 + NVIDIA T400
	- Ubuntu $18.04 + \text{CUDA} 11.6$
- \blacksquare Benchmark pool & Power parameters

(b) Idle and static power of each GPU

- Scheduling Approaches
	- § **sBEET-mg**
		- \triangleright The complete version of the proposed framework
	- § **sBEET-mg Offline Only**
		- \triangleright The offline part of the proposed framework
	- § **LCF ("Little-Core-First")**
	- § **BCF ("Biggest-Core-First")**
		- \triangleright Load concentration
	- § **Load-Dist (load distribution):**
		- \triangleright Load distribution

Hardware Setup

- § Multi-GPU System
	- \blacksquare NVIDIA RTX3070 @ 1725 MHz
	- \bullet NVIDIA T400 @ 1425 MHz
- Custom Power Measurement Tool
	- \blacksquare nRF52832 SoC
	- INA260 power sensor

Performance Evaluation

- Taskset Generation
	- 100 randomly generated tasksets
	- Running for 15s on our multi-GPU system
- Experiment Settings
	- 24 SMs are allowed on RTX3070
	- Results of other settings can be found in the paper
- \checkmark Up to 23% and 18% less deadline misses compared to Load-Dist and BCF
- \checkmark sBEET-mg has lower energy consumption

Power Prediction Accuracy

- § Randomly generated one taskset under each utilization
- Average mean-absolute-error is 10.80 W ($\approx 6\%$ of 180W)
- § More results can be found in the paper

Comparison with Previous Work - sBEET

- Taskset Generation
	- 100 randomly generated tasksets
	- Running for 15s on our multi-GPU system
- Experiment Settings
	- 24 SMs are allowed on RTX3070
- Scheduling Approaches
	- § Proposed approaches
		- sBEET-mg, sBEET-mg Offline Only
	- sBEET w/ other allocation methods
		- § WFD, FFD, BFD

- \checkmark Note that the results of BFD+sBEET and FFD+sBEET are overlapped
- \checkmark sBEET-mg has the lowest deadline miss ratio

Simulation w/ Multiple GPUs

- Simulating a Multi-GPU System
	- **RTX3070 w/ 12 SMs**
	- **RTX3070 w/ 12 SMs**
	- \blacksquare T400 w/ all 6 SMs

Conclusion

- \blacksquare We observed that the existing simple task allocation approaches a energy efficiency regardless of whether the GPU is homogeneous
- We extended the prior work and proposed sBEET-mg, the multiimproves both schedulability and energy efficiency
- We designed a power monitoring setup for precise power measure
- Various experiments on both real hardware and simulation shows simultaneously reduce deadline misses and energy consumption

Source code available at https://github.com

Towards Energy-Efficient Real-Time Schedule Schedu Heterogeneous Multi-GPU

Yidi Wang, Mohsen Karimi, and Hyos

Thank yo

https://github.com/rtenlab/sB