
Yidi Wang, Mohsen Karimi and Hyoseung Kim

University of California, Riverside

IEEE Real-Time Systems Symposium (RTSS) 2022

Towards Energy-Efficient Real-Time Scheduling
of Heterogeneous Multi-GPU Systems

Motivation
§ In a multi-GPU system, workload allocation methods can be

categorized to:
§ Load distribution
§ Idle energy consumption from computing units causes energy inefficiency

§ Load concentration
§ Different tasks have different energy-preferred GPU

§ The problem is more complicated in a real-time system
§ Real-time tasks have different arriving patterns with different timing constraints

11/23/22 Motivation 2

Related Work
§ Real-time GPU Scheduling

§ Temporal multitasking¹ ² ³: focus on the time-sharing of the GPU
§ Poor energy efficiency and lack of support for heterogeneous GPUs

§ Spatial multitasking⁴
§ No consideration of energy efficiency as well as multi-GPUs

§ GPU Energy Efficiency⁵ ⁶ ⁷
§ Focuses on regulating the number of active SMs

§ Problem: SM-level power gating is not yet available in today’s GPUs

§ Our previous work – sBEET framework⁸
§ Combines spatial and temporal multitasking to balance energy consumption and schedulability

§ We extend this work to a heterogeneous multi-GPU system through offline task allocation and runtime job migration

11/23/22 Related Work 3

[1] G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor systems with GPUs. Real-Time Systems, 48:34–74, 05 2012
[2] H. Kim, P. Patel, S. Wang, and R. Rajkumar. A server-based approach for predictable GPU access control. RTCSA, 2017
[3] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Rajkumar. RGEM: A responsive GPGPU execution model for runtime engines. RTSS, 2011
[4] S. K. Saha, Y. Xiang, and H. Kim. STGM: Spatio-temporal GPU management for real-time tasks. RTCSA, 2019
[5] P. Aguilera, K. Morrow, and N. S. Kim, “QoS-aware dynamic resource allocation for spatial-multitasking GPUs,” in 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), 2014
[6] Z.-G. Tasoulas and I. Anagnostopoulos, “Improving GPU performance with a power-aware streaming multiprocessor allocation methodology,” Electronics, vol. 8, no. 12, 2019.
[7] P.-H. Wang, C.-L. Yang, Y.-M. Chen, and Y.-J. Cheng. Power gating strategies on GPUs. TACO, 2011
[8] Y. Wang, M. Karimi, Y. Xiang, and H. Kim, “Balancing energy efficiency and real-time performance in GPU scheduling,” in 2021 IEEE Real-Time Systems Symposium (RTSS), 2021

Contributions

§ Analyzed the power usage characteristics on a multi-GPU system with our customized power
monitoring tool

§ Proposed a framework to address the timeliness and energy efficiency simultaneously in a
heterogeneous multi-GPU environment

§ Developed a custom power monitoring tool that obtains precise power measurements

§ The proposed work outperforms the conventional load concentration and distribution approaches in
both real hardware and simulation

11/23/22 Contributions 4

We propose sBEET-mg:
ü An energy-efficient real-time GPU scheduling framework for heterogeneous

multi-GPU systems

Proposed Work Overview
§ Custom power sensing tool
§ Scheduling framework

§ Centralized scheduler (offline task allocation + runtime job migration)
§ One single CUDA context

§ Two worker threads dedicated for each GPU

11/23/22 Proposed Work Overview 5

SoftwareHardware

Scheduling Framework
GPUs

PCIE

PSU

Power
sensing
system

Power reading
script

Measured
power

Power sensing
GPU profiles worker worker workerworker

Worker threads pool

Centralized Scheduler

Offline task allocation

Runtime job
migration Energy

Predictor

System Model
§ Platform Model

§ A single-ISA system 𝚷 consisting with 𝝎
heterogeneous GPUs

§ A GPU 𝝅𝒌 containing 𝑴𝒌 SMs

§ Task Model
§ A taskset 𝜞 consists of 𝒏 periodic GPU tasks:
§ Non-preemptive
§ W/ Constrained deadlines

𝜏" ≔ (𝐺", 𝑇", 𝐷")
WCET, period, deadline

§ Each task 𝜏" consists of a sequence of jobs 𝐽",$
§ Each job can execute with a different number

of SMs on a different GPU

11/23/22 System Model 6

Memcpy H2D 𝐺!"# 𝜋$

CPU

GPU
𝜋$

GPU execution 𝐺!,&' (𝑚, 𝜋$)

𝑚 SMs

Memcpy D2H 𝐺!#" 𝜋$

WCET of a job 𝐽",$:
𝐺",$ 𝑚, 𝜋% = 𝐺"&' 𝜋% + 𝐺",$(𝑚, 𝜋% + 𝐺!"# 𝜋$

Power and Energy Model
§ Power model

§ Power model: 𝑃 = 𝑃) + 𝑃' + 𝑃"'*(

§ For a set of jobs J = {𝐽+, 𝐽,, … , 𝐽-}:

§ For a taskset Γ, energy consumption in [t1, t2]:

§ Energy consumption of all GPUs:

11/23/22 Power and Energy Model 7

𝑥!% 𝑡 = &0, 𝜏! 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑐𝑡𝑖𝑣𝑒 𝑜𝑛 𝑆𝑀$
1, 𝜏! 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 𝑜𝑛 𝑆𝑀$

𝑃 = 𝑃& +7
!'(

)

𝑃!"(𝑚!) + 𝑃!"*+(𝑀 −7
!'(

)

𝑚!)

𝐸$ 𝑡(, 𝑡, = =
-!

-"
𝑃$& +7

.#∈.

𝑃$,!" 7
%'(

1$

𝑥!% 𝑡 + 𝑃$!"*+ 𝑀$ −7
.#∈.

7
%'(

1$

𝑥!% 𝑡 𝑑𝑡

𝐸 𝑡(, 𝑡, = 7
∀3$∈4

𝐸$ 𝑡(, 𝑡,

Insights on Conventional Approaches (1)

11/23/22 Insights on Conventional Approaches 8

§Baseline Scheduling Approaches

§ Load Concentration
§ It assigns a GPU job to the most packed GPU

§ Load Distribution
§ It chooses an idling GPU first (or a GPU with the highest number of idling SMs)

Insights on Conventional Approaches (2)

11/23/22 Insights on Conventional Approaches 9

§Homogeneous GPUs
§ Example 1

GPU 1
T400

6
0

0 20 60
f = 1425MHz 40

GPU 0
T400

6
0

0 20 60
f = 1425MHz 40

6
0

0 20 6040

6
0

0 20 6040

E=2.3J E=2.05J

Load concentration is better in this case

Load distribution Load Concentration

Insights on Conventional Approaches (3)

11/23/22 Insights on Conventional Approaches 10

§Homogeneous GPUs
§ Example 2

6
0

0 20 6040

6
0

0 20 6040 80

80

GPU 1
T400

6
0

0 20
f = 1425MHz 40

GPU 0
T400

6
0

0 20
f = 1425MHz 40

Load distribution Load Concentration

§ Same taskset, but 𝜏+ executes slightly earlier with 4 SMs

E=2.12J E=2.18J

A small difference made load distribution the winner

Insights on Conventional Approaches (4)

11/23/22 Insights on Conventional Approaches 11

§Heterogeneous GPUs
§ Example 1

!!,!
46

0

GPU 0
RTX3070

GPU 1
T400

6
0

0 20 60

f = 1725MHz

f = 1425MHz 40

30

!#,!

!!,!
46

0

6
0

0 20 6040

30
!#,!

Load distribution Load Concentration

E= 7.35J E= 7.24J

Insights on Conventional Approaches (5)

11/23/22 Insights on Conventional Approaches 12

§Heterogeneous GPUs
§ Example 2

!!,!

!#,!

46

0

GPU 0
RTX3070

GPU 1
T400

6
0

0 20 60

f = 1725MHz

f = 1425MHz 40

30
!!,!

46

0

6
0

0 20 6040

30 !#,!

Load distribution Load Concentration

E= 7.19J E= 7.3J

Insights on Conventional Approaches (6)

11/23/22 Insights on Conventional Approaches 13

§ To improve energy efficiency…

§ Neither approaches should be preferred regardless of whether the GPUs are
homogeneous or not

§ If we can make all tasks on the same GPU finish at similar time, active-idle
power consumption of unused SMs can be minimized

§ However, it is hard to realize with real-time tasks since they have different
arrival patterns and timing constraints

Energy-Efficient Multi-GPU Scheduling (1)

§ Energy Optimality:

§ Definition 1. (Energy optimal SMs) The energy-optimal number of SMs 𝑚%,"
./0, for a task 𝜏" on

a GPU 𝜋% is defined as the number of SMs that leads to the lowest energy consumption when it
executes in isolation on the GPU during an arbitrary time interval.

§ Definition 2. (Energy preferred GPU) The energy-preferred GPU for a task 𝜏" in a multi-GPU
system Π is the GPU that consumes the least amount of energy when 𝜏" executes with 𝑚%,"

./0

SMs on it.

11/23/22 Energy-Efficient Multi-GPU Scheduling 14

Energy-Efficient Multi-GPU Scheduling (2)

§ sBEET-mg Overview:
§ Adaptively chooses the GPU and SM configuration of each job of real-time GPU tasks such

that it brings the minimum expected energy consumption to all GPUs in the system

§ Approach:
§ An offline task distribution algorithm
ØAs a guideline for the runtime scheduler

§ A heuristic runtime scheduler
ØTwo worker threads per GPU to enable parallel execution of jobs
ØDecides whether to execute a job on the preassigned GPU or migrate it to another GPU

11/23/22 Energy-Efficient Multi-GPU Scheduling 15

Energy-Efficient Multi-GPU Scheduling (3)

§ Offline Task Distribution:
§ Main idea: For each task, the algorithm tries

to assign it to the energy-preferred GPU

§ Step 1: Sort all tasks in the decreasing order
of priority

§ Step 2: For each task, it obtains a list of
GPUs in an order of energy-preference

§ Step 3: Simple utilization check for
admission

§ Step 3: Assign the unassigned tasks in Step 3
to the GPUs that will have the minimum
utilization

11/23/22 Energy-Efficient Multi-GPU Scheduling 16

Energy-Efficient Multi-GPU Scheduling (4)

§ Runtime Job Migration:
§ Main idea: Migrate and pack jobs at runtime to further reduce energy consumption since the

GPUs are not SM-level power-gated

§ Decide at runtime:
ØConsider the energy consumption of a given job on each GPU
ØChoose the one that can meet all deadlines with the minimum predicted energy consumption
Ø If no GPU can meet the deadline, select the one with the minimum energy consumption

11/23/22 Energy-Efficient Multi-GPU Scheduling 17

Energy-Efficient Multi-GPU Scheduling (5)

GPU 0
worker 0

GPU 0
worker 1

GPU 1
worker 0

GPU 1
worker 1

Job release/deadline&! &# &%

The first instance
of !! is skipped

11/23/22 Energy-Efficient Multi-GPU Scheduling 18

GPU 0
worker 0

GPU 0
worker 1

GPU 1
worker 0

GPU 1
worker 1

Job release/deadline&! &# &%

The first instance
of !" is migrated

The first instance of !! is schedulable

ü All three jobs are schedulable w/
migration

§ Runtime Job Migration – Case Study 1

Energy-Efficient Multi-GPU Scheduling (6)

11/23/22 Energy-Efficient Multi-GPU Scheduling 19

GPU 0
worker 0

GPU 0
worker 1

GPU 1
worker 0

GPU 1
worker 1

Job release/deadline&! &#

Migrated for
energy efficiency

GPU 0
worker 0

GPU 0
worker 1

GPU 1
worker 0

GPU 1
worker 1

Job release/deadline&! &#

ü Energy consumption in two
schedules:
• w/o migration - 6.51 J
• w/ migration - 6.49 J

§ Runtime Job Migration – Case Study 2

Evaluation

11/23/22 Evaluation 20

§ Multi-GPU System
§ NVIDIA RTX3070 + NVIDIA T400
§ Ubuntu 18.04 + CUDA 11.6

§ Benchmark pool & Power parameters

§ Scheduling Approaches
§ sBEET-mg
Ø The complete version of the proposed

framework
§ sBEET-mg Offline Only
Ø The offline part of the proposed

framework
§ LCF (“Little-Core-First”)
§ BCF (“Biggest-Core-First”)
Ø Load concentration

§ Load-Dist (load distribution):
Ø Load distribution

Hardware Setup
§ Multi-GPU System

§ NVIDIA RTX3070 @ 1725 MHz
§ NVIDIA T400 @ 1425 MHz

§ Custom Power Measurement Tool
§ nRF52832 SoC
§ INA260 power sensor

11/23/22 Hardware Setup 21

Adafruit
Feather
nRF52

Adafruit
INA260 Power

Sensor

NVIDIA
RTX 3070

NVIDIA
T400

USB

Data

Data

12V

12V

12V

i2c

i2c i2c

NVIDIA RTX 3070

NVIDIA T400

nRF52832

Power Supply

Motherboard

PCIe

PCIeINA260

INA260
INA260

Performance Evaluation
§ Taskset Generation

§ 100 randomly generated tasksets
§ Running for 15s on our multi-GPU

system

§ Experiment Settings
§ 24 SMs are allowed on RTX3070
§ Results of other settings can be found in

the paper

11/23/22 Performance Evaluation 22

ü Up to 23% and 18% less deadline misses
compared to Load-Dist and BCF

ü sBEET-mg has lower energy consumption

Power Prediction Accuracy
§ Randomly generated one taskset under each utilization
§ Average mean-absolute-error is 10.80 W (≈6% of 180W)
§ More results can be found in the paper

11/23/22 Power Prediction Accuracy 23

Comparison with Previous Work - sBEET
§ Taskset Generation

§ 100 randomly generated tasksets
§ Running for 15s on our multi-GPU system

§ Experiment Settings
§ 24 SMs are allowed on RTX3070

§ Scheduling Approaches
§ Proposed approaches

§ sBEET-mg, sBEET-mg Offline Only
§ sBEET w/ other allocation methods

§ WFD, FFD, BFD

11/23/22 Compared with Previous Work 24

ü Note that the results of BFD+sBEET and
FFD+sBEET are overlapped

ü sBEET-mg has the lowest deadline miss ratio

Simulation w/ Multiple GPUs
§ Simulating a Multi-GPU System

§ RTX3070 w/ 12 SMs
§ RTX3070 w/ 12 SMs
§ T400 w/ all 6 SMs

11/23/22 Simulation w/ Multiple GPUs 25

Conclusion
§ We observed that the existing simple task allocation approaches are not a preferred option for

energy efficiency regardless of whether the GPU is homogeneous or heterogeneous

§ We extended the prior work and proposed sBEET-mg, the multi-GPU scheduling framework that
improves both schedulability and energy efficiency

§ We designed a power monitoring setup for precise power measurement for our experiments

§ Various experiments on both real hardware and simulation shows our proposed work can
simultaneously reduce deadline misses and energy consumption

11/23/22 Conclusion 26

Source code available at https://github.com/rtenlab/sBEET-mg/

https://github.com/rtenlab/sBEET-mg/

Towards Energy-Efficient Real-Time Scheduling of
Heterogeneous Multi-GPU Systems

Yidi Wang, Mohsen Karimi, and Hyoseung Kim

11/23/22 27

Thank you!
https://github.com/rtenlab/sBEET-mg/

https://github.com/rtenlab/sBEET-mg/

