Towards Energy-Efficient Real-Time Scheduling of Heterogeneous Multi-GPU Systems

Yidi Wang, Mohsen Karimi and Hyoseung Kim

University of California, Riverside

IEEE Real-Time Systems Symposium (RTSS) 2022

Motivation

- In a multi-GPU system, workload allocation methods can be categorized to:
 - Load distribution
 - Idle energy consumption from computing units causes energy inefficiency
 - Load concentration
 - Different tasks have different energy-preferred GPU
- The problem is more complicated in a real-time system
 - Real-time tasks have different arriving patterns with different timing constraints

Related Work

- Real-time GPU Scheduling
 - Temporal multitasking^{1 2 3}: focus on the time-sharing of the GPU
 - Poor energy efficiency and lack of support for heterogeneous GPUs
 - Spatial multitasking⁴
 - No consideration of energy efficiency as well as multi-GPUs
- GPU Energy Efficiency^{5 6 7}
 - Focuses on regulating the number of active SMs
 - Problem: SM-level power gating is not yet available in today's GPUs
- Our previous work sBEET framework⁸
 - Combines spatial and temporal multitasking to balance energy consumption and schedulability
 - We extend this work to a heterogeneous multi-GPU system through offline task allocation and runtime job migration

^[1] G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor systems with GPUs. Real-Time Systems, 48:34-74, 05 2012

^[2] H. Kim, P. Patel, S. Wang, and R. Rajkumar. A server-based approach for predictable GPU access control. RTCSA, 2017

^[3] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Rajkumar. RGEM: A responsive GPGPU execution model for runtime engines. RTSS, 2011

^[4] S. K. Saha, Y. Xiang, and H. Kim. STGM: Spatio-temporal GPU management for real-time tasks. RTCSA, 2019

^[5] P. Aguilera, K. Morrow, and N. S. Kim, "QoS-aware dynamic resource allocation for spatial-multitasking GPUs," in 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), 2014

^[6] Z.-G. Tasoulas and I. Anagnostopoulos, "Improving GPU performance with a power-aware streaming multiprocessor allocation methodology," Electronics, vol. 8, no. 12, 2019.

^[7] P.-H. Wang, C.-L. Yang, Y.-M. Chen, and Y.-J. Cheng. Power gating strategies on GPUs. TACO, 2011

^[8] Y. Wang, M. Karimi, Y. Xiang, and H. Kim, "Balancing energy efficiency and real-time performance in GPU scheduling," in 2021 IEEE Real-Time Systems Symposium (RTSS), 2021

Contributions

We propose sBEET-mg:

- ✓ An energy-efficient real-time GPU scheduling framework for heterogeneous multi-GPU systems
- Analyzed the power usage characteristics on a multi-GPU system with our customized power monitoring tool
- Proposed a framework to address the timeliness and energy efficiency simultaneously in a heterogeneous multi-GPU environment
- Developed a custom power monitoring tool that obtains precise power measurements
- The proposed work outperforms the conventional load concentration and distribution approaches in both real hardware and simulation

Proposed Work Overview

- Custom power sensing tool
- Scheduling framework
 - Centralized scheduler (offline task allocation + runtime job migration)
 - One single CUDA context
 - Two worker threads dedicated for each GPU

System Model

- Platform Model
 - A single-ISA system Π consisting with ω heterogeneous GPUs
 - A GPU π_k containing M_k SMs
- Task Model
 - A taskset Γ consists of n periodic GPU tasks:
 - Non-preemptive
 - W/ Constrained deadlines

$$\tau_i \coloneqq (G_i, T_i, D_i)$$
WCET, period, deadline

- Each task τ_i consists of a sequence of jobs $J_{i,j}$
- Each job can execute with a different number of SMs on a different GPU

WCET of a job $J_{i,j}$: $G_{i,j}(m,\pi_k) = G_i^{hd}(\pi_k) + G_{i,j}^e(m,\pi_k) + G_i^{dh}(\pi_k)$

Power and Energy Model

Power model

- Power model: $P = P^s + P^d + P^{idle}$
- For a set of jobs $J = \{J_1, J_2, ..., J_n\}$: $P = P^s + \sum_{i=1}^n P_i^d(m_i) + P^{idle}(M \sum_{i=1}^n m_i)$
- For a taskset Γ , energy consumption in [t1, t2]:

$$E_k(t_1, t_2) = \int_{t_1}^{t_2} \left(P_k^s + \sum_{J_i \in J} \left(P_{k,i}^d \left(\sum_{m=1}^{M_k} x_i^m(t) \right) \right) + P_k^{idle} \left(M_k - \sum_{J_i \in J} \sum_{m=1}^{M_k} x_i^m(t) \right) \right) dt$$

• Energy consumption of all GPUs:

$$E([t_1, t_2]) = \sum_{\forall \pi_k \in \Pi} E_k([t_1, t_2])$$

$$x_i^m(t) = \begin{cases} 0, \tau_i \text{ is not active on } SM_k \\ 1, \tau_i \text{ is active on } SM_k \end{cases}$$

Insights on Conventional Approaches (1)

Baseline Scheduling Approaches

Load Concentration

It assigns a GPU job to the most packed GPU

Load Distribution

• It chooses an idling GPU first (or a GPU with the highest number of idling SMs)

Insights on Conventional Approaches (2)

- Homogeneous GPUs
 - Example 1

Table III: Taskset in Examples 1 and 2

Task	Application	$G_i^e(\pi_0,6)$	$G_i^e(\pi_0,4)$	$G_i^e(\pi_0,3)$	$G_i^e(\pi_0,2)$
$ au_1 = au_2$	Histogram	32.67 ms	47.95 ms	63.724 ms	95.53 ms

Load distribution

Load Concentration

Load concentration is better in this case

Insights on Conventional Approaches (3)

- Homogeneous GPUs
 - Example 2

Table III: Taskset in Examples 1 and 2

Task	Application	$G_i^e(\pi_0,6)$	$G_i^e(\pi_0,4)$	$G_i^e(\pi_0,3)$	$G_i^e(\pi_0,2)$
$\overline{ au_1} = au_2$	Histogram	32.67 ms	47.95 ms	63.724 ms	95.53 ms

• Same taskset, but τ_1 executes slightly earlier with 4 SMs

A small difference made load distribution the winner

Insights on Conventional Approaches (4)

- Heterogeneous GPUs
 - Example 1

Table IV: Taskset in Example 3 and 4

Task	Application	$G_{i}^{e}(30,\pi_{0})$	$G_i^e(16,\pi_0)$	$G_i^e(6,\pi_1)$
$\overline{ au_1}$	MatrixMul	11.98 ms	21.55 ms	-
$ au_2$	Hotspot	12.00 ms	22.31 ms	73.188 ms

Load Concentration

Insights on Conventional Approaches (5)

- Heterogeneous GPUs
 - Example 2

Table IV: Taskset in Example 3 and 4

_	Task	Application	$G_{i}^{e}(30,\pi_{0})$	$G_i^e(16,\pi_0)$	$G_i^e(6,\pi_1)$
	$ au_1$	MatrixMul	11.98 ms	21.55 ms	-
	$ au_2$	Hotspot	12.00 ms	22.31 ms	73.188 ms

Load Concentration

Insights on Conventional Approaches (6)

- To improve energy efficiency...
 - Neither approaches should be preferred regardless of whether the GPUs are homogeneous or not
 - If we can make all tasks on the same GPU finish at similar time, active-idle power consumption of unused SMs can be minimized
 - However, it is hard to realize with real-time tasks since they have different arrival patterns and timing constraints

Energy-Efficient Multi-GPU Scheduling (1)

- Energy Optimality:
 - **Definition 1.** (*Energy optimal SMs*) The energy-optimal number of SMs $m_{k,i}^{opt}$, for a task τ_i on a GPU π_k is defined as the number of SMs that leads to the lowest energy consumption when it executes in isolation on the GPU during an arbitrary time interval.
 - **Definition 2.** (*Energy preferred GPU*) The energy-preferred GPU for a task τ_i in a multi-GPU system Π is the GPU that consumes the least amount of energy when τ_i executes with $m_{k,i}^{opt}$ SMs on it.

$$\underset{\pi_k \in \Pi}{\operatorname{argmin}} \int_0^{\delta} P_k^s + P_{k,i}^d(m_{k,i}^{opt}) + P_k^{idle}(M_k - m_{k,i}^{opt}) dt$$

Energy-Efficient Multi-GPU Scheduling (2)

- sBEET-mg Overview:
 - Adaptively chooses the GPU and SM configuration of each job of real-time GPU tasks such that it brings the minimum expected energy consumption to all GPUs in the system

Approach:

- An offline task distribution algorithm
 - ➤ As a guideline for the runtime scheduler
- A heuristic runtime scheduler
 - Two worker threads per GPU to enable parallel execution of jobs
 - > Decides whether to execute a job on the preassigned GPU or migrate it to another GPU

Energy-Efficient Multi-GPU Scheduling (3)

- Offline Task Distribution:
 - Main idea: For each task, the algorithm tries to assign it to the energy-preferred GPU
 - Step 1: Sort all tasks in the decreasing order of priority
 - Step 2: For each task, it obtains a list of GPUs in an order of energy-preference
 - Step 3: Simple utilization check for admission
 - Step 3: Assign the unassigned tasks in Step 3 to the GPUs that will have the minimum utilization

Algorithm 1 Offline Task Distribution

```
1: procedure TASK DISTRIBUTION
        Sort tasks in \Gamma in decreasing order of priority
        for \tau_i \in \Gamma do
            Get a list \Pi_i of GPUs in non-increasing order of expected
    energy consumption for \tau_i
            for \pi_k \in \Pi_i do
                if U(\pi_k) + U_i(\pi_k, m_{k,i}^{opt}) \leq 1 then
                     Assign \tau_i to \pi_k
                    break
                end if
            end for
            if \tau_i is not assigned then
                 Assign \tau_i to the GPU that has a minimum utilization
    after \tau_i is assigned
            end if
        end for
15: end procedure
```

Energy-Efficient Multi-GPU Scheduling (4)

- Runtime Job Migration:
 - Main idea: Migrate and pack jobs at runtime to further reduce energy consumption since the GPUs are not SM-level power-gated

- Decide at runtime:
 - > Consider the energy consumption of a given job on each GPU
 - > Choose the one that can meet all deadlines with the minimum predicted energy consumption
 - ➤ If no GPU can meet the deadline, select the one with the minimum energy consumption

Energy-Efficient Multi-GPU Scheduling (5)

■ Runtime Job Migration – Case Study 1

Table VII: Taskset used in case study 1 $D_i = 0.5 * T_i \text{ (ms)}$ Offset (ms) GPU assigned by Alg. 1 RTX3070 RTX3070 au_2 RTX3070 $\tau_1 = \tau_2 = \tau_3$ Job release/deadline GPU 0 worker 0 GPU 0 pthread_cond_wait worker 1 GPU 1 The first instance worker 0 of τ_3 is skipped GPU 1 worker 1

✓ All three jobs are schedulable w/ migration GPU 0 The first instance of τ_3 is schedulable worker 0 GPU 0 pthread_cond_wait worker 1 GPU 1 worker 0 The first instance of τ_2 is migrated GPU 1 worker 1

Energy-Efficient Multi-GPU Scheduling (6)

■ Runtime Job Migration – Case Study 2

Table VIII: Taskset used in case study 2

Task	$D_i = 0.5 * T_i \text{ (ms)}$	Offset (ms)	GPU assigned by Alg. 1
$\overline{ au_1}$	100	0	RTX3070
$ au_2$	100	1	T400

- ✓ Energy consumption in two schedules:
 - w/o migration 6.51 J
 - w/ migration 6.49 J

Evaluation

- Multi-GPU System
 - NVIDIA RTX3070 + NVIDIA T400
 - Ubuntu 18.04 + CUDA 11.6
- Benchmark pool & Power parameters

(a) Dynamic power of benchmarks

$Benchmark_i$	$P_{0,i}^d(1)$	$P_{1,i}^d(1)$
MatrixMul	3.77 W	2.06 W
Stereodisparity	1.63 W	0.98 W
Hotspot	1.14 W	0.81 W
DXTC	1.67 W	1.15 W
BFS	0.98 W	1.07 W
Histogram	0.91 W	1.19 W

(b) Idle and static power of each GPU

GPU_k	P_k^s	P_k^{idle}
π_0 (RTX 3070)	46 W	0.445 W
π_1 (T400)	8 W	0.652 W

- Scheduling Approaches
 - sBEET-mg
 - The complete version of the proposed framework
 - sBEET-mg Offline Only
 - ➤ The offline part of the proposed framework
 - LCF ("Little-Core-First")
 - BCF ("Biggest-Core-First")
 - ➤ Load concentration
 - Load-Dist (load distribution):
 - > Load distribution

Hardware Setup

- Multi-GPU System
 - NVIDIA RTX3070 @ 1725 MHz
 - NVIDIA T400 @ 1425 MHz
- Custom Power Measurement Tool
 - nRF52832 SoC
 - INA260 power sensor

Performance Evaluation

- Taskset Generation
 - 100 randomly generated tasksets
 - Running for 15s on our multi-GPU system
- Experiment Settings
 - 24 SMs are allowed on RTX3070
 - Results of other settings can be found in the paper
- ✓ Up to 23% and 18% less deadline misses compared to Load-Dist and BCF
- ✓ sBEET-mg has lower energy consumption

Power Prediction Accuracy

- Randomly generated one taskset under each utilization
- Average mean-absolute-error is 10.80 W (≈6% of 180W)
- More results can be found in the paper

Comparison with Previous Work - sBEET

- Taskset Generation
 - 100 randomly generated tasksets
 - Running for 15s on our multi-GPU system
- Experiment Settings
 - 24 SMs are allowed on RTX3070
- Scheduling Approaches
 - Proposed approaches
 - sBEET-mg, sBEET-mg Offline Only
 - sBEET w/ other allocation methods
 - WFD, FFD, BFD

- ✓ Note that the results of BFD+sBEET and FFD+sBEET are overlapped
- ✓ sBEET-mg has the lowest deadline miss ratio

Simulation w/ Multiple GPUs

- Simulating a Multi-GPU System
 - RTX3070 w/ 12 SMs
 - RTX3070 w/ 12 SMs
 - T400 w/ all 6 SMs

Conclusion

- We observed that the existing simple task allocation approaches are not a preferred option for energy efficiency regardless of whether the GPU is homogeneous or heterogeneous
- We extended the prior work and proposed sBEET-mg, the multi-GPU scheduling framework that improves both schedulability and energy efficiency
- We designed a power monitoring setup for precise power measurement for our experiments
- Various experiments on both real hardware and simulation shows our proposed work can simultaneously reduce deadline misses and energy consumption

Source code available at https://github.com/rtenlab/sBEET-mg/

26

Towards Energy-Efficient Real-Time Scheduling of Heterogeneous Multi-GPU Systems

Yidi Wang, Mohsen Karimi, and Hyoseung Kim

Thank you!

https://github.com/rtenlab/sBEET-mg/

11/23/22