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Abstract—With the increasing demand for computational

power, research on general-purpose graphics processing units

(GPUs) has been active for various real-time systems spanning

from autonomous vehicles to real-time clouds. While the use

of GPUs can significantly benefit compute-intensive tasks with

timing constraints, their high power consumption becomes an

important problem given that it is not rare to see multiple GPUs

in today’s systems. In this paper, we present our study towards

energy-efficient real-time scheduling in heterogeneous multi-GPU

systems. We first make observations using a custom power

monitoring setup that, in a multi-GPU system, conventional

task allocation approaches for multiprocessors do not lead to

energy efficiency and there is no clear winner. Then we propose

a multi-GPU real-time scheduling framework, sBEET-mg, that

builds upon prior work on single-GPU systems and makes offline

and runtime scheduling decisions to execute a given job on

the energy-optimal GPU while exploiting spatial multitasking on

each GPU for better concurrency and real-time performance.

We implemented the proposed framework on a real multi-GPU

system and evaluated it with randomly-generated task sets of

benchmark programs. We also experimentally simulated our

method in a system containing more GPUs. Experimental results

show that sBEET-mg reduces deadline misses by up to 23%

and 18% compared to the conventional load distribution and

load concentration methods, respectively, while simultaneously

achieving lower energy consumption than them.

I. INTRODUCTION

Graphics processing units (GPUs) are attracting much at-
tention due to their outstanding performance over CPUs by
allowing huge data parallelism. With the increasing demand
driven by data-driven and machine-intelligent applications, re-
search on real-time GPU multitasking becomes more and more
popular while leaving their high power consumption as an
open problem. According to [1], the high power consumption
of GPUs has a significant impact on scalability, reliability and
feasibility. An increase in power consumption also raises the
risk of thermal violations [2–4]. Without proper management,
these issues can be worse in a heterogeneous multi-GPU sys-
tem which is not rare to see in today’s computing environment.

In a multi-GPU system, the workload allocation methods
can be generally classified into load distribution and load
concentration. For load distribution, due to the fact that CUDA
kernels rarely fully utilize all the internal computing units of a
GPU [5], the idle energy consumption of the computing units
of an active GPU causes energy inefficiency [6, 7] and this
issue is likely to be magnified in a multi-GPU system. For
load concentration, as we will discuss more details later, dif-
ferent tasks may have different energy-preferred GPUs; hence,

packing and offloading to the same GPU while keeping other
GPUs idle does not necessarily lead to better energy efficiency
than load distribution. The problem gets more complicated in
real-time systems, since tasks have their own arriving patterns
with different timing requirements.

This paper paves a new way to address the energy efficiency
and scheduling problem in heterogeneous multi-GPU real-
time systems. To gain a precise understanding of power usage
characteristics, we analyze a multi-GPU system consisting of
two heterogeneous GPUs with a custom hardware tool. With
the obtained power characteristics of benchmark programs
on different GPUs, we give observations on the energy con-
sumption of a multi-GPU system when different scheduling
strategies are applied. Based on these, we present a multi-
GPU scheduling framework, sBEET-mg, by extending the
latest energy-aware real-time scheduling approach [6] to a
multi-GPU system. sBEET-mg allocates tasks to their energy-
optimal GPUs offline and performs runtime migration based
on the estimation of the resulting energy consumption of
all GPUs in the system. It also takes advantage of spatial
multitasking to improve real-time performance without losing
energy efficiency.

To evaluate the performance of sBEET-mg, the frame-
work is implemented in the multi-GPU system we built.
We conduct experiments using randomly-generated tasksets
of well-known benchmarks to compare the schedulability and
energy consumption of our framework against three existing
approaches based on load concentration and load distribution.
By judiciously executing jobs on the right GPUs with a
proper number of GPU’s internal computing units, sBEET-mg
achieves lower energy consumption as well as deadline misses.
The contribution of this work is summarized as follows:

• We analyze the power usage characteristics of various
benchmarks on two recent NVIDIA architectures using
precise measurements from our own power monitoring
setup. This leads to observations that neither conventional
load concentration nor load distribution scheduling strate-
gies are preferable for energy efficiency in a multi-GPU
system.

• To the best of our knowledge, the proposed sBEET-mg
framework is the first attempt to simultaneously address
the timeliness and energy efficiency in a heterogeneous
multi-GPU environment. It builds upon the latest work
but includes several unique approaches, including offline
allocation of tasks to energy-preferred GPUs and runtime



job migration with spatial multitasking and energy con-
sumption estimation across all GPUs in the system.

• We conduct experiments using a real heterogeneous
multi-GPU platform as well as simulation of larger scale
systems. Experimental results indicate that sBEET-mg
can achieve up to 23% and 18% of reduction in deadline
misses compared to the conventional load concentration
and distribution approaches while consuming less energy
than them at the same time.

II. RELATED WORK

Real-Time GPU Scheduling. Real-time scheduling methods
for GPU tasks can be categorized into two types: temporal
and spatial multitasking. Temporal multitasking views each
GPU as an indivisible, minimum unit of resource and focuses
on time-sharing of the GPU. Given that many GPUs provide
no support or only a limited level of preemption, many
earlier studies have modeled a GPU as a non-preemptive
resource [8–12]. In particular, Elliott et al. [10] considered
a multi-GPU system where a k-exclusion locking protocol
was used to assign tasks to k GPUs. This allows the system
to utilize multiple GPUs in a work-conserving manner, but
can result in poor energy consumption as we will show later.
In addition, their focus was limited to homogeneous GPUs
and no performance variation across GPUs was considered.
Spatial multitasking, on the other hand, explicitly takes into
account internal processing units of a GPU, such as NVIDIA’s
Streaming Multiprocessors (SMs) and AMD’s Compute Units
(CUs),1 and allows one GPU to execute two or more GPU
tasks at the same time by using persistent threads [13–15].
Recent studies have shown that spatial multitasking offers
better performance isolation and concurrency [16] and better
schedulability and resource utilization [17, 18] than spatial
multitasking for real-time workloads. However, their focus was
primarily on a single GPU and none of them considered energy
efficiency along with the timeliness of GPU tasks.
GPU Energy Efficiency. Prior work on GPU energy manage-
ment has mainly focused on regulating the number of active
SMs [13, 19–21]. This is based on the assumption that, if the
GPU hardware supports SM-level power gating, unused SMs
can be turned off and energy consumption can be reduced.
For example, Hong and Kim [19] focused on finding the
optimal number of SMs for the highest performance-per-Watt.
Aguilera et al. [13] and Sun et al. [20] proposed QoS-aware
SM allocation techniques based on spatial multitasking to
provide both performance and energy efficiency. However,
these approaches have been tested using only analytical power
models or simulation, and the claimed benefits are difficult to
obtain in today’s commercial GPUs because even the latest
GPU architectures do not support SM-level power gating. So
some SMs left unused by those methods can continue to
consume active-idle power until all SMs of the GPU become
fully idle. The lack of capability to power-gate individual SMs

1We will use SMs to refer to those internal processing units in the rest of
the paper.

also makes the energy management problem of GPUs different
from that of multi-core CPUs.

Recently, Wang et al. [6] proposed an energy-efficient real-
time GPU scheduler, called sBEET. They first showed that
although spatial multitasking benefits schedulability, it may
lead to an energy-inefficient schedule due to the active-idle
power consumption of unused SMs. Then they proposed a
runtime scheduler that balances the energy inefficiency caused
by spatial multitasking with improved real-time performance
in a single GPU system. Our work is motivated by this
and aims to generalize to a system equipped with multiple
heterogeneous GPUs.

III. BACKGROUND AND SYSTEM MODEL

A. Background

Our description here is based on NVIDIA GPUs and the
CUDA programming abstractions but it generally applies to
other types of GPUs, e.g., AMD’s ROCm platform and HIP
runtime APIs. For more information, interested readers can
refer to [6, 16, 22–25].
GPU Execution Model. GPU programs written in CUDA can
make processing requests to a GPU at runtime. The general
sequence for running a GPU program is as follows: (i) allocate
GPU memory, (ii) copy input data from main memory to GPU
memory, (iii) request to launch the GPU program code (called
kernel), (iv) copy the results back from GPU to main memory,
and (v) deallocate GPU memory. While the CUDA memory
model by default separates GPU and main memory spaces, it
offers a unified memory model that eliminates the need for
explicit data copies between GPU memory and main memory.

CUDA provides streams as means to control concurrency.
All memory copy and kernel execution requests on the same
CUDA stream are executed sequentially. However, different
CUDA streams can run in an overlapped manner as long as
resources are available, thereby allowing better concurrency.
Once launched, a kernel is executed by using all available
SMs on the GPU. CUDA APIs do not provide an option to
determine the number of SMs used by each kernel, but the
spatial multitasking technique [16, 17, 26, 27] implements this
in software and provides a controlled way to execute multiple
kernels in parallel.
GPU Power Management. As a GPU consists of multiple
SMs, the power management of the GPU happens at both the
SM level and the device level. An SM goes to the active-
idle state as soon as it is not used. When all of the SMs
are unused, the GPU is power-gated2 and each SM no longer
consumes active-idle power. In other words, if only one SM
is active, the GPU is not power-gated and the other SMs
consume active-idle power. While SM-level power gating has
been studied extensively in the literature to achieve better
energy efficiency [19, 28], our experiments have confirmed that

2Since the details of NVIDIA GPU’s power management mechanisms are
not publicly available, we are unsure if it is actually power-gated or just clock-
gated. Nonetheless, we use the term “power gating” since it is generally used
in the literature of GPU power management.
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it is still not available on NVIDIA’s latest Ampere architecture.
This matches with the observations of the recent paper [6].

When the GPU is left fully idle for a relatively long time, it
enters a deeper low-power mode. This time interval is observed
to be approximately 2 seconds in our experiments. While
exploiting this power state would be beneficial in interactive
systems, we do not consider it in this work since such a long
idle time is hard to expect in real-time systems serving periodic
or sporadic workloads.

B. System Model
We describe our models for the hardware platform, tasks,

and power and energy consumption. The summary of the
notation is listed in Table I.
Platform Model. We consider a single-ISA system ⇧ con-
sisting of ! heterogeneous GPUs. The k-th GPU in the system
is denoted by ⇡k, and each GPU is characterized by its power
model, computational capacity and clock speed. The GPU
⇡k consists of Mk SMs, each of which is an independent
computing unit from the view of spatial multitasking. We
use type(⇡k) to denote the type of the GPU device ⇡k, e.g.,
type(⇡k) = type(⇡0

k) means two GPUs are identical.
Task Model. We consider a taskset � consisting of n sporadic
GPU tasks with fixed priority and constrained deadlines. We
focus on the kernel execution and memory copy operations,
and a task ⌧i is characterized as follows:

⌧i := (Gi, Ti, Di)

• Gi: The cumulative worst-case execution time (WCET)
of GPU segments (including memory copies and kernels)
of a single job of ⌧i. The duration depends on how many
SMs are assigned to a particular job.

• Ti: the period or the minimum inter-arrival time.
• Di: the relative deadline of each job of ⌧i, and is smaller

than or equal to the period, i.e., Di  Ti.
A task ⌧i consists of a sequence of jobs Ji,j , where Ji,j

indicates the j-th job of task ⌧i,3 and we assume that the input
size of each job of a task is constant along the time. Following
the idea of spatial GPU multitasking [16, 17, 26, 27], each job
Ji,j of the task ⌧i can execute with a different number of SMs
on a different GPU. Hence, we use Gi,j(m,⇡k) to represent
the WCET of Ji,j , where m denotes the number of SMs used
by Ji,j on the GPU ⇡k. Gi,j(m,⇡k) is given by the sum of
the following three parameters:

Gi,j(m,⇡k) = G
hd
i (⇡k) +G

e
i,j(m,⇡k) +G

dh
i (⇡k)

• G
hd
i (⇡k): the worse-case data copy time from the host to

the device memory on the GPU ⇡k

• G
e
i,j(m,⇡k): the worst-case kernel execution time of Ji,j

when m SMs are assigned to it on the GPU ⇡k

• G
dh
i (⇡k): the worse-case data copy time from the device

to the host memory on the GPU ⇡k

With the above parameters, a job’s finish time can be
estimated from the start of the job and we use fi,j to denote

3For simplicity, we may omit the subscript j and use Ji when we do not
need to distinguish individual jobs.

Table I: Symbols and their definitions in this work

Notation Definition
⇡k The k-th GPU in the system
Mk The total number of SMs on the GPU ⇡k

M limit
k The number of SMs that allowed (by the user) on the ⇡k

Gi The cumulative WCET of GPU segments of task ⌧i
Ti The period of task ⌧i
Di The relative deadline of task ⌧i, and Di  Ti
Ji,j The j-th job of task ⌧i
ri,j The arrival time of Ji,j
di,j The absolute deadline of Ji,j
fi,j The estimated finish time of Ji,j
m Number of SMs
Gi,j The WCET of Ji,j
Ghd

i (⇡k) The WCET of device to host memory copy of ⌧i on ⇡k

Gdh
i (⇡k) The WCET of device to host memory copy of ⌧i on ⇡k

Ge
i (m,⇡k) The WCET of kernel execution of ⌧i on ⇡k with m SMs

Ui(⇡k) The utilization of task ⌧i on ⇡k
U(⇡k) The utilization of ⇡k

it. The utilization of a task ⌧i on a GPU ⇡k is defined as the
average utilization when different number of SMs are assigned,
and it is computed as Ui(⇡k) =

PMk
m=1 Ui(m,⇡k)

Mk
, where Mk is

the total number of SMs on the GPU ⇡k. The utilization of
⌧i with m SMs on ⇡k is Ui(m,⇡k) = Gi(m,⇡k)

Ti
. The GPU

utilization U(⇡k) is the summation of all the tasks that are
assigned to the GPU ⇡k, i.e., U(⇡k) =

P
Ui(⇡k). Without

loss of generality, we assume a discrete-time system where
timing parameters can be represented in positive integers.
Power Model. Following the power modeling approach in [6,
29, 30], the power consumption of a GPU at time t can be
represented as follows:

P = P
s + P

d + P
idle (1)

where P
s is the static power consumption, P d is the dynamic

power consumption from active SMs, and P
idle is the power

consumption from idle SMs. Specifically, P
d is the power

consumption required to execute kernels on SMs, and depends
on the kernel characteristics including memory access patterns
and the number of SMs used [30]. It can be decomposed into
a linear sum of per-SM power consumed by each job. For a
subset of jobs J = {J1, J2, ...} that are executing simultane-
ously on the GPU ⇡k at time t, the power consumption of the
GPU ⇡k, Pk, can be computed as follows:

Pk =

8
<

:
P

s
k +

P
Ji2J

P
d
k,i(mi) + P

idle
k (Mk �

P
Ji2J

mi) if J = ;

P
s
k if J 6= ;

(2)
where m1,m2, ... are the number of SMs that are being used
by J1, J2, ... at time t (

P
mi  Mk). P d

k,i(mi) is the dynamic
power consumption of Ji on ⇡k with mi active SMs. P idle

k (m)
is the idle power consumption of m inactive SMs, and Mk,
as defined previously, is the total number of SMs on the GPU
⇡k. Since dynamic and idle power is known to be linear to the
number of SMs [30], P d

k,i(mi) = mi ·P d
k,i(1) and P

idle
k (m) =

mi · P idle
k (1) holds, respectively. Note that when all SMs on

the GPU are idle (i.e.
P

mi = 0), the GPU is power-gated
and there is no power consumption from P

d
k and P

idle
k , i.e.P

P
d
k (0) = 0 and P

idle
k (Mk) = 0.

In this paper, we directly measured these power parameters
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of using our test-bed setup (Sec. IV-A), but they can also be
estimated using analytical methods [30].
Energy Consumption. We adopt the energy computation
method in Eq. 5 in [6]. Let us consider a set of jobs
J = {J1, J2, ...} that are scheduled on the GPU ⇡k during a
time interval [t1, t2]. Depending on scheduling decisions, some
jobs of J may be active at t 2 [t1, t2] while the others may
be inactive. We define a binary indicator x

m
i (t) that returns

1 if the m-th SM is actively used by a job Ji at time t, and
0 otherwise. Using this, the energy consumption on a single
GPU ⇡k can be computed by:

Ek([t1, t2]) =

Z t2

t1

 
P

s
k +

X

Ji2J

⇣
P

d
k,i(

MkX

m=1

x
m
i (t))

⌘

+ P
idle
k

⇣
Mk �

X

Ji2J

MkX

m=1

x
m
i (t)

⌘!
dt

(3)

And further, the total energy consumption of all GPUs in the
the system ⇧ can be obtained by:

E([t1, t2]) =
X

8⇡k2⇧

Ek([t1, t2]) (4)

In the above modeling, we did not explicitly consider other
on-device components such as copy engines, caches, and
buses. However, their power consumption is relatively small
compared to that of SMs and can be captured as part of Ps

and Pd. We will later show with our experiments that our
power and energy models are faithful enough to use for making
energy-efficient scheduling decisions.

IV. ENERGY USAGE CHARACTERISTICS OF
MULTI-GPU SYSTEMS

The energy consumption of heterogeneous multi-GPU sys-
tems is hard to predict since there is no correlation of dynamic
power parameters (Pd and Pidle) and kernel execution time
(Gi) across different types of GPUs. In this section, we focus
on a system equipped with two GPUs and explore the impact
of scheduling policies on energy consumption.

A. Hardware Setup

The system used in this work consists of one NVIDIA
RTX 3070 and one NVIDIA T400. RTX 3070 is based on
the latest Ampere architecture. It has 8 GB of global memory
and 46 SMs with 5888 CUDA cores. All the SMs share a
L2 cache of 4096 KB. Another GPU in our system, T400, is
based on the Turing architecture, a predecessor of Ampere. It
has 2 GB global memory and 6 SMs with 384 CUDA cores,
while 512 KB of L2 cache is shared among all the SMs. For
both GPUs, data connection is established directly from the
GPU to the PCI Express (PCIe) of the motherboard. During
experiments, we fixed the SM clock speed of both GPUs to the
maximum, i.e., 1725 MHz for RTX 3070 and 1425 MHz for
T400, and both GPUs were able to maintain their frequencies
without throttling.

It is worth noting that, although some NVIDIA devices
provide power readings via nvidia-smi using a built-in

USB

Data

Data

12V

12V

12V

i2c

i2c i2c

NVIDIA RTX 3070

NVIDIA T400

nRF52832

Power Supply

Motherboard

PCIe

PCIeINA260

INA260
INA260

(a) Block diagram of our hardware setup

(b) Implementation of the block diagram

Figure 1: Multi-GPU system with a power monitoring tool

power sensor, its accuracy is not high (“+/- 5 watts” according
to the official document [31]) and the power reading is not
available on the T400 device. The power measurements by the
built-in sensor may show anomalies and need to be corrected
as the prior work suggested [32].

Due to these reasons, we developed a custom hardware tool
to obtain a precise measurement of power consumption by
each GPU. Fig. 1 shows our system with two GPUs connected
to the power monitoring tool. We used an INA260 sensor [33]
for each of the power supply lines of the GPUs. We used
PCIe risers and cut the 12V power lines to install INA260
sensor sensors in series. Due to the high power consumption
of NVIDIA RTX 3070 and the limitation of PCIe standard
power provision, i.e., 75 Watt, the GPU receives power from
both PCIe and the power supply. However, the power provided
by PCIe is sufficient for NVIDIA T400 and it does not require
any external power supply. We used an nRF52832 SoC [34]
to configure the sensors to sample voltage and current. The
maximum sampling rate we could obtain from the I2C protocol
of the INA260 sensor is 500 Hz, which leads to one sample for
every two milliseconds. The data of the sensors are combined
and sent to the same computer via USB cable to ensure the
best timing synchronization between GPU states and power
measurements. Each power sample is recorded in milliWatt,
and a high-resolution timestamp is added to each sample as
soon as the sample arrives. The power consumption of RTX
3070 is the summation of its power drawn from both PCIe
and the power supply. It should be noted that the power
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Table II: Power parameters of benchmarks and GPUs

(a) Dynamic power of benchmarks

Benchmarki P d
0,i(1) P d

1,i(1)
MatrixMul 3.77 W 2.06 W
Stereodisparity 1.63 W 0.98 W
Hotspot 1.14 W 0.81 W
DXTC 1.67 W 1.15 W
BFS 0.98 W 1.07 W
Histogram 0.91 W 1.19 W

(b) Idle and static power of each GPU

GPUk P s
k P idle

k
⇡0 (RTX 3070) 46 W 0.445 W
⇡1 (T400) 8 W 0.652 W

consumption from the 3.3V line of PCIe was not considered
because it was negligibly small (the current was less than 30
mA) and it was not substantially affected by the current state of
the GPU. More details can be found in our tool demonstration
paper [35].

B. Benchmarks and Power Profiles

Six benchmark programs are considered in our exper-
iments: MATRIXMUL, STEREODISPARITY, DXTC, HIS-
TOGRAM from NVIDIA CUDA 11.6 Samples [36], and
HOTSPOT, BFS from the Rodinia GPU benchmark suite [37].
This choice is made based on whether the execution time of
the program is long enough on both GPUs for the sampling
rate of our power monitoring tool or whether the input size is
configurable to increase the execution time. Each program is
then modified to use spatial multitasking on a separate CUDA
stream, but within the same CUDA context to enable concur-
rent execution of these streams. The software environment we
used is Ubuntu 18.04 and CUDA 11.6 SDK.

To explore the impact of different scheduling policies on
these workloads, we measured their execution time and power
parameters using our setup shown in the previous subsection.
Fig. 2 depicts the WCET of each benchmark as the number of
SMs changes on the two GPUs considered. Note that we took
the maximum observed execution time as the WCET. On RTX
3070, Although the execution time of some programs appears
to plateau on RTX 3070 after a certain number of SMs, it in
fact decreases in proportion to the SM count. When the same
number of SMs is used, RTX 3070 gives shorter execution time
as it uses a newer architecture running at a higher frequency,
but the ratio of the difference varies by benchmarks.

Table II shows the dynamic power parameters of the bench-
marks and the idle and static power of the two GPUs. ⇡0 is
RTX 3070 and ⇡1 is T400. For dynamic power, we report
only the case of SM count mi = 1, i.e., P

d
k,i(1), because

P
d
k,i(mi) = mi · P d

k,i(1) holds as discussed in Sec. III-B. In-
terestingly, RTX 3070 does not always consume more dynamic
power than T400 despite its higher frequency. Idle power is
lower in RTX 3070, probably due to its newer architecture.
Static power is significantly higher on RTX 3070 but this does
not affect the energy consumption of the entire system unless
the GPU device is unplugged or put in a deep sleep mode.

Figure 2: WCET of benchmarks on RTX 3070 and T400

C. Observations
Based on real execution time and power parameters, we now

give some examples to make observations and gain insights
towards energy-efficient scheduling on a multi-GPU system.
Baseline scheduling approaches. Let us consider two work-
load allocation approaches that are well understood in the
context of multiprocessor systems.

• Load Concentration: Assigns given workloads to the same
resource until it gets fully utilized. For GPUs with spatial
multitasking, this means a GPU task is assigned to the
most packed GPU, with the remaining SMs of that GPU.
This is the default allocation approach of the NVIDIA
driver when the system has multiple GPUs.

• Load Distribution: Uniformly distributes given workloads
across available resources. Hence, it chooses an idling
GPU first (or a GPU with the highest number of unused
SMs when spatial multitasking is considered). Note that
this is the expected behavior when k-exclusion locking
protocols are used [10].

In the following examples, we show how the choice of
workload allocation contributes to the energy consumption
of the resulting schedule. The task parameters used in the
examples are extracted from the results shown in Fig. 2 and
summarized in Tables III and IV. For ease of presentation, we
focus on kernel execution time, Ge

i , and omit data copy time.
Homogeneous GPUs. Consider a homogeneous multi-GPU
system ⇧ = {⇡0,⇡1} containing two identical NVIDIA T400
GPUs, i.e., type(⇡0) = type(⇡1).

Example 1. Consider two tasks with the execution time
parameters given in Table. III. The tasks are running on
different CUDA streams, so asynchronized memory copy and
current kernel execution can happen. For each GPU, a single
execution instance is created for each task so that different
GPUs can be used simultaneously.

To emulate a scenario that the system is lightly loaded, the
number of SMs each task can use is limited to 3 on T400.
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GPU 1
T400

6
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GPU 0
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(a) Schedule w/ distributed load:
E=2.3J

6
0
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6
0
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(b) Schedule w/ concen-
trated load: E=2.05J

Figure 3: Scheduling results in Example 1

We select an observation window of 100ms for the following
two possible schedules shown in Fig. 3: schedules by load
distribution and by load concentration. In Fig.3a, the job of
⌧1, J1,1, and the job of ⌧2, J2,1, are distributed to two GPUs,
and the estimated energy consumption of this schedule is 2.3J
computed by Eq. (4). Fig.3b shows the schedule under load
concentration strategy. In this schedule, J1,1 and J2,1 share the
GPU ⇡0 while leaving ⇡1 idle so that it can be power gated.
The estimated energy consumption of the system is 2.05J.

Table III: Taskset in Examples 1 and 2

Task Application Ge
i (⇡0, 6) Ge

i (⇡0, 4) Ge
i (⇡0, 3) Ge

i (⇡0, 2)
⌧1 = ⌧2 Histogram 32.67 ms 47.95 ms 63.724 ms 95.53 ms

Although the above example shows that load concentration
(i.e., packing tasks to as few GPUs as possible while keeping
the other GPUs idle so that they can be power gated) may
be more energy efficient, it is not always true. As mentioned
in [6], the use of spatial multitasking can lead to energy
inefficiency since the GPU is not SM-level power-gated and
unused SMs incur idle power consumption when the GPU
remains active. In the next example, we will show that packing
tasks to one GPU while leaving the other idle can be less
energy efficient than distributing tasks to all GPUs, especially
when it is inevitable to leave idle SMs for a long time.

Example 2. Consider the same tasks as in Examples 1. Now,
the job of ⌧1, J1,1, executes on ⇡0 with 4 SMs, and the exe-
cution time parameters are given in Table III. In the schedule
shown in Fig. 4a, J1,1 and J2,1 are distributed to ⇡0 and ⇡1,
and J2,1 executes on ⇡1 with 6 SMs. In the schedule in Fig. 4b,
J2,1 is assigned to ⇡0 with the remaining SMs and executes
in with J1,1 concurrently, while ⇡1 stays idle. However, after
J1,1 finishes execution, J2,1 is still running, during which the
idle SMs on ⇡0 keep consuming energy, and this makes it less
energy efficient than the schedule with load distribution. With
Eq. (4), we can calculate the estimated energy consumption of
two schedules in an observation window of 100ms, and they
are 2.12J and 2.18J respectively.

Heterogeneous GPUs. In the next two examples, we will
explore the energy consumption under two allocation ap-
proaches in a heterogeneous multi-GPU system ⇧ = {⇡0,⇡1}
(i.e.m type(⇡0) 6= type(⇡1)). This is the same hardware
configuration as in Sec. IV-A.

Example 3. Consider a taskset with parameters listed in
Table IV. Suppose at t = 0, the job of ⌧i, J1,1, has just

GPU 1
T400

6
0

0 20
f = 1425MHz 40

GPU 0
T400

6
0

0 20
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(a) Schedule w/ distributed
load: E=2.12J
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(b) Schedule w/ concentrated
load: E=2.18J

Figure 4: Scheduling results in Example 2

Table IV: Taskset in Example 3 and 4

Task Application Ge
i (30,⇡0) Ge

i (16,⇡0) Ge
i (6,⇡1)

⌧1 MatrixMul 11.98 ms 21.55 ms -
⌧2 Hotspot 12.00 ms 22.31 ms 73.188 ms

started its kernel execution on the GPU ⇡0 with 16 SMs, and
at the same time, the job of ⌧2, J2,1, is ready for execution.
Following the work distribution approach, J2,1 will execute
on the GPU ⇡1 and the resulting schedule of the two tasks
is shown in Fig. 5a. Similar to the previous examples, when
an observation window of 100ms is considered, the energy
consumption of this schedule is calculated to be 7.35J.

Fig. 5b shows the schedule under the load concentration
approach. Since J1,1 is not using all the SMs of the GPU ⇡0,
J2,1 is able to use the remainder. In this way, ⇡1 is idle so that
it can perform power gating to save energy and the estimated
energy consumption of this schedule is 7.24J.

Example 4. Consider the same multi-GPU system and task
parameters as in Example 3. But at this time, J1,1 starts
kernel execution with 30 SMs on ⇡k. Following the load
concentration approach, J2,1 uses the remaining 16 SMs on
⇡k as shown in Fig. 6b and the estimated energy consumption
of this schedule is 7.3J. Since ⇡1 is idle when J2,1 is ready
for its execution, the load distribution approach executes J2,1

on ⇡2 with all the available SMs. Fig. 6a shows this schedule
and the estimated energy consumption here is 7.19J, which is
smaller than that with the load concentration approach.

To summarize, the above examples suggest that neither
load concentration nor distribution should be preferred over
the other when making scheduling decisions in a multi-GPU
system, regardless of whether GPUs are homogeneous or not.
One thing we can clearly observe is that, if all tasks assigned
to the same GPU have similar finish time, this could be
helpful to reduce active-idle power consumption of unused
SMs. However, this is hard to realize with real-time tasks
since they have different periods and arrival patterns and their
absolute completion time is determined only at runtime. The
difficulty of this problem multiplies when timing constraints
are considered.

V. ENERGY-EFFICIENT MULTI-GPU SCHEDULING

Based on the observations from the previous section,
we propose our scheduling framework that makes runtime
scheduling decisions for both timeliness and energy efficiency
in multi-GPU systems. This approach extends sBEET [6],
which is the latest work on energy-efficient real-time GPU
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scheduling for a single GPU system. Hence, we name our
framework as “sBEET-mg”.

A. Energy Optimality

To better explain the proposed scheduling framework, here
we revisit the definition of the energy-optimal number of SMs
given in [6] and give the definition of energy-preferred GPU
for each task in a multi-GPU system.

Definition 1 (Energy optimal SMs [6]). The energy-optimal
number of SMs m

opt
k,i for a task ⌧i on a GPU ⇡k is de-

fined as the number of SMs that leads to the lowest en-
ergy consumption computed by Eq. (3) when it executes in
isolation on the GPU ⇡k during an arbitrary time interval
� � maxmMk G

e
i,j(m,⇡k).

In the above definition, it is worth noting that the energy-
optimal number of SMs is unaffected by the duration of �.
This is derived from Eq. (3). Assume the minimum possible
�min = maxmMk G

e
i , j(m,⇡k), which is long enough for ⌧i

to complete execution no matter how many SMs are allocated.
After �min, the GPU is power-gated and only P

s contributes
to energy consumption under any SM allocation. Using this
and the energy consumption model in Eq. (3), we can define
the energy-preferred GPU as below.

Definition 2. (Energy preferred GPU) The energy-preferred
GPU for a task ⌧i in a multi-GPU system ⇧ is given by:

argmin
⇡k2⇧

Z �

0
P

s
k + P

d
k,i(m

opt
k,i ) + P

idle
k (Mk �m

opt
k,i )dt (5)

where � is an arbitrary time interval (� � maxGe
i,j(⇡k,m))

and m
opt
k,i is the energy-optimal number of SMs for ⌧i on the

GPU ⇡k. This gives the GPU that consumes the least amount
of energy when ⌧i executes with m

opt
k,i SMs on it.

B. Overview of sBEET-mg
The main idea of sBEET-mg is to adaptively select the

GPU and the SM configuration for individual jobs of real-
time tasks. When a job is arrived or completed, among all
possible assignments, the scheduler chooses the one that the
job can bring the minimum expected energy consumption to
all GPUs in the system.

The software framework structure of sBEET-mg is similar
to that of sBEET, except that sBEET-mg is specifically de-
signed to handle multiple GPUs. The sBEET-mg framework
maintains one centralized server in the system and multiple
worker threads for each GPU. The role of the central server
is to receive jobs from GPU tasks and let them share the
same CUDA context for concurrent stream execution. Once
the scheduling algorithm of the server determines the target
GPU to dispatch a job, it sends the job to the corresponding
worker thread for execution on that GPU. Then this worker
thread calls cudaSetDevice() to set the GPU device to
use and launches the kernel in a separate CUDA stream. With
this design, a separate execution instance is available for each
running job so that multiple GPUs can be utilized simultane-
ously. We adopt persistent threads for GPU partitioning. In
this way, sBEET-mg enables parallel kernel execution on all
GPUs in the system, and the decision on which GPU to use
and when to use spatial multitasking is made by our scheduling
algorithm presented later.

When the sBEET-mg framework starts, the procedure in
Alg. 1 is executed to allocate tasks to GPUs. More details
on this procedure will be explained below. Following the
observation in [6], we limit the number of worker threads on
each GPU to two since more parallelism does not necessarily
improve performance [6]. Hence, the server creates two worker
threads as well as two CUDA streams for each GPU, and each
worker is bounded to one CUDA stream. When the worker
thread receives a job, it runs that job on the corresponding
CUDA stream. Each worker shares the status of its SM, i.e.,
active or idle, with the server through a global shared data
structure whenever a job assigned to it begins and completes
execution. This allows the server to have a global view of the
system and make scheduling decisions properly.

Whenever a new job Ji,j arrives, the server invokes the
runtime scheduling algorithm given in Alg. 2 (explained later)
to decide whether to execute this job on the preassigned
GPU by Alg. 1 or migrate it to another GPU. When a job
completes, the server is notified by the corresponding worker
and freed SM resources are reclaimed for the execution of next
or pending jobs.

C. Offline Task Distribution
For a given taskset �, the proposed task distribution al-

gorithm allocates tasks to GPUs offline. Basically, for each
task ⌧i 2 �, the algorithm tries to assign it to the energy-
preferred GPU ⇡x with m

opt
x,i as long as the capacity of ⇡x

permits. Alg. 1 depicts the pseudocode of the task distribution
procedure. It first sorts all tasks in � in decreasing order of
priority so that higher-priority tasks have a better chance to get
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Algorithm 1 Offline Task Distribution
1: procedure TASK DISTRIBUTION
2: Sort tasks in � in decreasing order of priority
3: for ⌧i 2 � do

4: Get a list ⇧i of GPUs in non-increasing order of expected
energy consumption for ⌧i

5: for ⇡k 2 ⇧i do

6: if U(⇡k) + Ui(⇡k,m
opt
k,i )  1 then

7: Assign ⌧i to ⇡k

8: break

9: end if

10: end for

11: if ⌧i is not assigned then

12: Assign ⌧i to the GPU that has a minimum utilization
after ⌧i is assigned

13: end if

14: end for

15: end procedure

their energy-preferred GPUs (line 2). Then for each task ⌧i, it
obtains a list ⇧i of GPUs in non-increasing order of expected
energy consumption. Hence, the energy-optimal GPU of ⌧i

goes first in this list. For each GPU ⇡k in the ordered list ⇧i,
it runs a simple utilization check to decide whether ⌧i can
be accepted (line 3 to line 10). After iterating through all the
GPUs, if ⌧i is still not assigned to any GPU, the algorithm
assigns it to the GPU that will have the minimum utilization
after ⌧i is assigned (line 12). The result of this allocation serves
as a guideline for the runtime scheduler.

D. Runtime Job Migration
Alg. 1 gives an offline task distribution strategy, and this can

lead to an energy-efficient schedule if all tasks can execute on
its energy-preferred GPU with the optimal number of SMs.
However, according to the given examples and the previous
work [7], it might not be energy efficient to turn on multiple
GPUs when the system is underutilized, since the GPUs are
not SM-level power gated and the energy consumed by active-
idle SMs can negatively affect the total energy consumption of
the system. Therefore, we seek opportunities to further reduce
the energy consumption of a multi-GPU system by judiciously
migrating and packing jobs at runtime.

Before introducing the proposed algorithm, we write a
function to adopt and encapsulate some methods of sBEET
(Alg. 2 and 3 in [6]):

function: SBEET(⇡k, Ji,j); returns (Scfg
i,j (⇡k), E)

The function sBEET takes two inputs, ⇡k and Ji,j , where
• ⇡k is the GPU that the caller (the runtime scheduler of

sBEET-mg, namely Alg. 1) wants to check.
• Ji,j is the job that the caller is going to make a scheduling

decision for.
It returns a tuple of S

cfg
i,j and E. Scfg

i,j is the SM allocation
result on ⇡k for Ji,j . If S

cfg
i,j = ;, Ji,j cannot execute on ⇡k

for now. E is the expected energy consumption of ⇧ during a
time window from the current time to the estimated finish time
of Ji,j , fi,j , with the SM allocation S

cfg
i,j . Hence, by Eq. (4),

E is equal to E([tnow, fi,j ]). If Scfg
i,j = ;, E = 1.

Alg. 2 gives the proposed runtime job migration scheduler.
It takes as input a job Ji,j which is either a newly-released
job (if there is no other pending job) or the highest-priority
pending job. The algorithm decides whether the job should
be launched at the current time or be delayed, which GPU to
use, and how many SMs should be assigned, by considering
the current status of the task’s energy-preferred GPU ⇡x. As
a result of scheduling decision making, the algorithm returns
a SM configuration S

cfg
i,j (⇡k) for Ji,j . If S

cfg
i,j (⇡k) = ;, Ji,j

is pushed to the pending queue for later consideration.

• (Alg. 2 line 2 to 24) If ⇡x is idle, the scheduler tentatively
puts Ji,j on ⇡x with m

opt
x,i SMs, checks if Ji,j [ ⇡x

can meet their deadlines,4 and then estimates the energy
consumption that Ji,j will contribute to the whole system.
If Ji,j [ ⇡x are not expected to meet deadlines, the
computed energy E1 is set to 1, meaning the assignment
is invalid (line 2 to 9). Then the scheduler will check
whether there is any chance to follow the packing strategy
to launch Ji,j on other active GPUs so that ⇡x can
be power gated to save energy. It iterates through ⇧i

which is obtained in Alg. 1, and follows the method in
sBEET to find whether there is any assignment that can be
more energy efficient and reduce deadline violations by
exploiting spatial multitasking techniques. The predicted
energy will be saved as E2, and the scheduler will return
the S

cfg
i,j with the smaller predicted energy consumption

(line 10 to 24).
• (Alg. 2 line 25 to 27) In the second case, ⇡x is partially

occupied. The scheduler calls SBEET(⇡k, Ji,j) to decide
and return the SM configuration S

cfg
i,j .

• (Alg. 2 line 28 to 46) If ⇡x is fully occupied, we consider
the following two cases: (i) Ji,j can be postponed and
wait for m

opt
x,i SMs on GPU ⇡x (line 29 to 36), or (ii)

execute on a GPU other than ⇡x (line 37 to 43). In
case (i), the scheduler estimates the time when ⇡x would
become available with m

opt
x,i SMs. If Ji,j can meet the

deadline with this assignment, then the scheduler predicts
the energy consumption from the current time to the
estimated finish time of Ji,j . Otherwise, the computed
energy E4 is set to 1. In case (ii), the scheduler iterates
through ⇧i and predicts the energy consumption if Ji,j is
placed on a GPU other than ⇡x. For each ⇡k 6=x 2 ⇧i, if
⇡k is not fully occupied, the scheduler calls SBEET(⇡k,
Ji,j) to get SM configuration S

0
5 and the predicted

energy consumption E
0
5. After all the available GPUs

are traversed, the scheduler saves the configuration with
minimum energy consumption. After these procedures
are done, the scheduler returns the corresponding SM
allocation S

cfg
i,j of (i) or (ii) that leads to smaller energy

consumption of Ji,j’s execution.

4This is done by following the original sBEET’s approach (Alg. 3 in [6])
that generates a schedule from the current time to fi,j for a given SM
allocation on ⇡x and checks if all jobs can meet their deadlines until fi,j .
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Algorithm 2 Runtime Job Migration
1: function JOB MIGRATION(Ji,j)
2: if ⇡x is idle then

3: Tentatively place Ji,j on ⇡x with mopt
x,i SMs

4: if Ji,j [ ⇡x will meet deadlines then

5: E1  E([tnow, fi,j ])
6: S1  the corresponding SM allocation
7: else

8: E1  1
9: end if

10: E2  1
11: for each ⇡k 6=x in ⇧i sorted by Alg. 1 do

12: if ⇡k is idle or ⇡k is fully occupied then

13: continue

14: else

15: (S0
2, E0

2) SBEET(⇡k, Ji,j)
16: E2  min(E2, E

0
2)

17: end if

18: end for

19: if E1 ==1 and E2 ==1 then

20: Assign Ji,j with maximum SMs on ⇡x

21: else

22: Select the schedule with min(E1, E2)
23: end if

24: return Scfg
i,j . the corresponding SM allocation for Ji,j

25: else if ⇡x is partially occupied then

26: (Scfg
i,j , E) SBEET(⇡x, Ji,j)

27: return Scfg
i,j

28: else . If the GPU is full
29: t1  current time
30: Tentatively place Ji,j on ⇡x and wait until mopt

x,i SMs
become available

31: t2  fi,j
32: if Ji,j [ ⇡x will meet deadlines then

33: E4  E([t1, t2])
34: else

35: E4  1
36: end if

37: E5  1
38: for each ⇡k 6=x in ⇧i sorted by Alg. 1 do

39: if ⇡k is not full then

40: (S0
5, E0

5) SBEET(⇡x, Ji,j)
41: E5  min(E5, E

0
5)

42: end if

43: end for

44: Select the schedule with min(E4, E5)
45: return Scfg

i,j . the corresponding SM allocation for Ji,j

46: end if

47: end function

E. Time Complexity
According to the time complexity analysis in [6], the time

complexity of the original sBEET is O(n · log(n)) where n

is the number of tasks. Suppose the number of GPUs in the
system is !. In Alg. 2, the procedure to check whether a job
can be scheduled on each GPU (lines 11 to 18 and 38 to 43) is
upper-bounded by ! ·O(n·log(n)); hence, the time complexity
of the runtime job migration is given by O(! · n · log(n)).

F. Offline Schedule Generation
This work targets soft real-time systems with no hard

guarantees. Tasks are always accepted, and our algorithms try
to minimize deadline misses and energy consumption. If one
needs hard guarantees, our algorithms can be used to generate

a schedule for one hyperperiod offline, check if this meets all
deadlines, and run it as a time-triggered schedule at runtime.

VI. EVALUATION

This section carries out experiments using our implemen-
tation for real hardware setup as well as simulation.5. The
majority of experiments are conducted on the hardware setup
given in Sec. IV-A. To evaluate performance in systems with
more GPUs, we also present experimental results from a
Python simulator we developed (Sec. VI-B).

In both experimental setups, we compare the performance
of sBEET-mg against the following approaches: (i) “LCF”
(Little-Core-First) with LTF (Largest-Task-First), (ii) “BCF”
(Biggest-Core-First) with LTF, both of which represent the
load concentration approach, and (iii) “Load-Dist” (load distri-
bution).6 We also consider “sBEET-mg Offline Only” to assess
the effect of the runtime algorithm (Alg. 2).

A. Hardware Experiments
In all the experiments on real hardware, we use the system

shown in Fig. 1 consisting of two GPUs, RTX3070 and T400.
Since the difference in computational power between these
two GPUs is too large, we decided to use only a portion of
SMs on RTX3070. This is reasonable since in practice, there
is a possible scenario where a portion of the GPU can be
reserved for the dedicated use of high-critical tasks, and the
remaining is shared among other tasks. In this system, ⇧ =
{⇡0,⇡1}, where type(⇡0) = RTX3070 and type(⇡1) = T400.
We set ⇡0 as the reference GPU, and the utilization of each
task (Ui(⇡k) = Ui(⇡0)) can be determined in this way.

Table V: Parameters for taskset generation

Parameters Range
Workload of the task One of the eight mentioned benchmarks
Number of tasks 6
Ui(⇡0) [0.01, 0.5]
Di 0.5 * Ti

1) Results of Schedulability: In this experiment, we com-
pare the schedulability of the proposed method with the other
approaches. For each value of utilization, 100 tasksets are
randomly generated with the parameters given in Table V
using the UUnifast algorithm [38], and we use RM to decide
task priorities. For each taskset, we run each approach for 15
seconds, and measure the deadline miss ratio of the tasks. Due
to the reason mentioned in Sec. VI-A, we limit the number
of SMs to be used on RTX3070 to 6, 12 and 24, and run the
same tasksets on the respective SM configurations.

Fig. 7 presents the absolute runtime deadline miss ratio
under each method, and sBEET-mg always has the lowest
deadline miss ratio among them. In particular, sBEET-mg
achieves up to 23% and 18% reduction in deadline misses
compared to Load-Dist and BCF, respectively. Since we use
the same tasksets in all the cases, the system gets most heavily

5Source code is available at https://github.com/rtenlab/sBEET-mg/.
6We define a “big-core” as a GPU with higher computational capacity and

a “little-core” as a GPU with lower capacity, i.e. more and fewer SMs.
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(a) 6 SMs allowed on RTX3070

(b) 12 SMs allowed on RTX3070

(c) 24 SMs allowed on RTX3070

Figure 7: Deadline miss ratio w.r.t. the utilization of taskset

loaded when SMs on RTX3070 is limited to 6 as Fig. 7a
shows, and least loaded when SMs on RTX3070 is limited to
24 as Fig. 7c shows. We can see that the deadline miss ratio
under all methods is getting lower from the top figure to the
bottom. In Fig. 7a, all the curves are closer to each other since
both of the GPUs only have 6 SMs that are allowed to be used.
Due to this reason, there is not much space for sBEET-mg to
play around. However, as more SMs are allowed on RTX3070
as shown in Fig. 7b and 7c, especially as the system gets
overloaded, since our proposed method takes into account the
future arrival of the tasks to find the right GPU and the number
of SMs, the tasks will have less chance get starved, our method
can significantly reduce deadline miss ratio.

2) Results of Energy Consumption: While running the
experiments in Sec. VI-A1, we also measured the runtime
energy consumption of the five approaches, and the results
are shown in Fig. 8. At first, we can observe that, with 24
SMs on RTX3070 and U  1.0, BCF yields marginally better
energy consumption than sBEET-mg. This is because BCF
assigns all workloads to the bigger GPU (RTX3070) and leaves
the smaller GPU (T400) idle all the time; however, it causes
an excessively high number of deadline misses, as shown in
Fig. 7c. In the other cases, the energy consumption of sBEET-
mg and sBEET-mg Offline Only is always lower than the other
three approaches that are energy-agnostic. Under all the three
SM configurations with U  1.0, the energy consumption
of sBEET-mg is lower than sBEET-mg Offline Only. The

(a) 6 SMs allowed on RTX3070

(b) 12 SMs allowed on RTX3070

(c) 24 SMs allowed on RTX3070

Figure 8: Energy consumption w.r.t. taskset utilization

reason is, when the system is not overloaded, the job migration
algorithm has more chances to take effect to save energy. Also,
sBEET-mg is always more energy-efficient than sBEET-mg
Offline Only when 24 SMs are used on RTX3070. With 6
and 12 SMs enabled on RTX3070 and U � 1.2, the energy
consumption of sBEET-mg Offline Only is the lowest because
(1) it guarantees that the tasks always run with m

opt, and (2)
in sBEET-mg, the use of the runtime algorithm with spatial
multitasking and job migration improves schedulability, which
inevitably causes more energy consumption [6].

Figure 9: Trace of actual and predicted power consumption

3) Power Prediction Accuracy: To evaluate the effective-
ness of the power prediction method used in our proposed
scheduler, we compare the predicted power consumption with
the actual power consumption measured by the power moni-
toring tool in Sec. IV-A. For each utilization considered, we
randomly select one taskset consisting of 6 tasks from the
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Table VI: Power prediction for tasksets with different utilizations

* Note: Maximum power is ⇡ 180 W
Taskset Util. Emeas (kJ) Epred (kJ) MAEpower (W) Released job Missed job
0.8 21.53 21.70 10.79 8882 1
1.0 22.12 22.71 9.56 13174 1
1.2 21.91 23.14 8.33 11858 0
1.4 22.30 24.05 10.55 16909 4
1.6 23.14 22.92 10.53 18033 438
1.8 24.16 24.84 11.54 23173 456
2.0 26.36 27.84 14.27 25841 865

benchmark pool using the parameters given in Table V, and
run each taskset using our proposed scheduler for 5 minutes.
Fig. 9 illustrates the measured and estimated power traces of
a taskset with utilization of 1.0. Table. VI summarizes the
results from all tasksets tested: Emeas and Epred stand for
measured and predicted energy, respectively, and MAE is the
mean-absolute-error (MAE) in power prediction. The numbers
of jobs released and missed deadlines during measurement are
also reported. The average MAE of all the tasksets of different
utilization is 10.80 W (⇡ 6% of 180 W), and we can say the
power prediction accuracy is good enough for this work.

4) Comparison with sBEET: One may wonder how the
original sBEET would perform if it is used in a multi-GPU
system with conventional offline task allocation methods such
as BFD, WFD, and FFD. In this experiment, we answer this
question by comparing the schedulability of the proposed work
against the original sBEET combined with three allocation
methods. The tasksets generated with the parameters in Ta-
ble V are used, and the number of SMs is set to 24 on
RTX3070. For each taskset, we run sBEET-mg, sBEET Offline
Only, WFD + sBEET, FFD + sBEET and BFD + sBEET
for 15 seconds each, and measure the deadline miss ratio.
Fig. 10 presents the absolute deadline miss ratio under the five
approaches, and sBEET-mg has the lowest among all of them.
Note that the curves of FFD + sBEET and BFD + sBEET are
overlapped because they had the exact same performance in
our experiments.

Figure 10: Deadline miss ratio of sBEET-mg and sBEET

5) Effect of Job Migration: To better understand the effect
of runtime job migration, let us consider the following two
case studies.
Case Study 1. Fig. 11 depicts the execution traces of the
taskset listed in Table VII under sBEET-mg with and without
job migration. The trace was collected using NVIDIA Nsight
Compute. The task-related GPU activities are highlighted in
different colors. For this taskset, all tasks are assigned to
RTX3070 by Alg. 1 due to the energy efficiency consideration.

However, they are not schedulable when job migration is not
used; as noted in Fig. 11a, J3,1 is skipped. Fig. 11b shows
the case where job migration is enabled. Unlike the previous
case, when J1,1 arrives, the line 4 of Alg. 2 finds that the
schedule would not be feasible if J1,1 is executed with m

opt.
Hence, it jumps to line 20 and runs J1,1 as fast as possible
on RTX3070. Later when J2,1 arrives, as RTX3070 is fully
occupied by J1,1, line 32 takes effect and finds J2,1 would
miss the deadline if it waits until RTX3070 becomes idle. The
algorithm further looks for opportunities to run J2,1 on other
GPUs and decides to move J2,1 to T400. In this way, all three
jobs are schedulable.

Table VII: Taskset used in case study 1

Task Di = 0.5 ⇤ Ti (ms) Offset (ms) GPU assigned by Alg. 1
⌧1 60 0 RTX3070
⌧2 45 1 RTX3070
⌧3 40 2 RTX3070

GPU 0 
worker 0

GPU 0 
worker 1

GPU 1 
worker 0

GPU 1 
worker 1

Job release/deadline&! &# &%

The first instance 
of !! is skipped

(a) sBEET-mg w/o migration

GPU 0 
worker 0

GPU 0 
worker 1

GPU 1 
worker 0

GPU 1 
worker 1

Job release/deadline&! &# &%

The first instance 
of !" is migrated

The first instance of !! is schedulable

(b) sBEET-mg

Figure 11: Job migration case study 1

Case Study 2. The taskset used in this case study is listed in
Table VIII and the execution traces are shown in Fig. 12. For
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this taskset, ⌧1 and ⌧2 are assigned to RTX3070 and T400,
respectively, by Alg. 1. In Fig. 12a where migration is not
used, J1,1 and J2,1 run on their assigned GPUs exclusively.
In Fig. 12b, when J2,1 arrives, Alg. 2 decides to move it
to another GPU to run concurrently with J1,1 for energy
efficiency (line 10 to 24. We measured the energy consumption
of these two schedules: the one without migration is 6.51J and
the one with migration is 6.49J. Despite the small difference,
this result shows the energy benefit of runtime migration.

Table VIII: Taskset used in case study 2

Task Di = 0.5 ⇤ Ti (ms) Offset (ms) GPU assigned by Alg. 1
⌧1 100 0 RTX3070
⌧2 100 1 T400

GPU 0 
worker 0

GPU 0 
worker 1

GPU 1 
worker 0

GPU 1 
worker 1

Job release/deadline&! &#

(a) sBEET-mg w/o migration

GPU 0 
worker 0

GPU 0 
worker 1

GPU 1 
worker 0

GPU 1 
worker 1

Job release/deadline&! &#

Migrated for 
energy efficiency

(b) sBEET-mg

Figure 12: Job migration case study 2

B. Simulation with Multiple GPUs
Although there are only two GPUs in our hardware setup,

our proposed method can handle a system containing more
GPUs, including homogeneous GPUs. We developed a sim-
ulator using Python for this purpose, in which our proposed
method and the baselines are implemented.

With the collected workload and power profile on the
real GPUs, we add the third GPU, another RTX3070 to the
simulation. In this experiment, we limit the number of SMs
on both RTX3070s to 12, and the configuration is given
in Table IX. With parameters given in Table V, for each
taskset utilization, 200 tasksets are generated and each runs
for 15 seconds. The results of the deadline miss ratio and the
predicted energy consumption are demonstrated in Fig. 13.
The proposed method has the best schedulability among the
five methods, and in most cases, sBEET-mg and sBEET-mg
Offline Only have better energy consumption compared to the
other baselines. The reason why sBEET has higher energy
consumption than sBEET-mg Offline Only when U � 1.6 is
due to its better schedulability, as discussed in Sec. VI-A2.

VII. CONCLUSION

In this paper, we first provided observations about schedul-
ing strategies in a multi-GPU system and found that existing
simple task allocation approaches are not a preferred option

Table IX: GPU configurations in simulation

GPU Id GPU Mk M limit
k

⇡0 RTX3070 46 12
⇡1 RTX3070 46 12
⇡2 T400 6 6

(a) Miss ratio w.r.t utilization of taskset

(b) Predicted energy w.r.t utilization of taskset

Figure 13: Simulation results of GPU configuration in Table IX

for energy efficiency regardless of whether GPUs are homo-
geneous or heterogeneous. This is mainly due to the fact that
today’s GPU architectures are not SM-level power-gated but
device-level power-gated; thus, some unused SMs can continue
to draw power although leaving as many processing units
idle as possible has been considered conventional wisdom
for CPU energy management. Based on these observations,
we extended prior work and proposed sBEET-mg, the multi-
GPU scheduling framework that improves both real-time per-
formance and energy efficiency by assigning energy-preferred
GPUs to tasks and performing job-level migration with SM-
level resource allocation. The effects of sBEET-mg in reducing
energy consumption and deadline miss rates are demonstrated
through various experiments on real hardware and simulation.

The precise measurement and analysis of power consump-
tion on the latest GPU architectures will give insights to future
research endeavors. We hope that our findings can serve as
an important stepping stone for the development of energy-
efficient multi-GPU real-time systems.
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