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Introduction
§GPU power management is important in CPS

§ GPUs are designed for better performance, with dramatically increased power 
consumption

§ Benefits of GPU power management:
§ Reliability, feasibility, scalability, etc.

§ Partitioning the GPU can improve real-time performance and resource 
efficiency
§ Spatial multitasking partitions the GPU into computing units, so that multiple 

kernels can run simultaneously 
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NVIDIA Jetson AGX Xavier
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§ The GPU is rail-gated and clock-gated, but not SM level power-gated



Related Work
§ Temporal Multitasking on GPU – Prior works specifically for real-time systems

§ Non-preemptive scheduling¹ ²: makes GPU access and blocking time predictable
§ Preemptive scheduling³ ⁴: decomposes big kernel into smaller segments
§ GPU resources may be underutilized

§ Spatial Multitasking on GPU⁵
§ It can reduce contention on computing resources between tasks
§ It may not lead to the most energy-efficient schedule

§ Resource Allocation for GPU Energy Saving⁶ ⁷
§ Turns off idling resources (i.e., SMs)
§ But SM-level power gating is not yet available even on the latest embedded GPUs
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Contributions

§ Derive a power and energy consumption analysis for GPU kernels scheduled w/ and w/o spatial 
multitasking on the GPU

§ Develop a runtime scheduler that balance the deadline misses and the energy consumption of non-
preemptive GPU kernels

§ Implement the scheduler on NVIDIA Jetson AGX Xavier 

§ The proposed work outperforms the existing spatial multitasking approach in real-time 
performance and energy consumption
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We proposed sBEET:
ü Real-time scheduling framework that Balances Energy Efficiency and Timeliness 

of GPU kernels on embedded GPUs



System Model
§ System Model

§ A GPU containing 𝑴 SMs
§ Single Memory Copy Engine

§ Task Model
§ A taskset 𝜞 consists of 𝒏 periodic tasks:
§ Non-preemptive 
§ W/ Constrained deadlines

𝜏! ≔ (𝐺!, 𝑇!, 𝐷!)
WCET, period, deadline

§ Job Model
§ Each task 𝜏! consists of a sequence of jobs 𝐽!,#
§ Job are running exclusively on the assigned number 

of SMs
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Power and Energy Analysis (1/5)
§ Power model

§ Power model: 𝑃 = 𝑃$ + 𝑃% + 𝑃!%&'
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𝑥!" 𝑡 = $0, 𝜏! 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑐𝑡𝑖𝑣𝑒 𝑜𝑛 𝑆𝑀"
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Power and Energy Analysis (2/5)
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§ WCET and power consumption profiling
§ Obtain power parameters for each application



Power and Energy Analysis (3/5)

§ Definition 1. (𝒎𝒐𝒑𝒕) The energy-
optimal number of SMs 𝑚/0, for a task 𝜏! is 
defined as the number of SMs that leads to 
the lowest energy consumption when it 
executes in isolation on the GPU during an 
arbitrary time interval.
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Linear-speedup (𝒎𝒐𝒑𝒕 = 𝑴)
Nonlinear-speedup (𝒎𝒐𝒑𝒕 < 𝑴)



Power and Energy Analysis (4/5)
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Extra consumed 
energy due to idle SMs 

The schedule of a job set J with spatial 
multitasking cannot be more energy-efficient 
than the schedule without spatial multitasking 
if the jobs in J are linear-speedup jobs. 

Theorem 1

Schedule in (b): 
ü Less energy efficient
ü Better schedulability

Consider two linear-speedup tasks:



Power and Energy Analysis (5/5)
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The schedule of a job set J with spatial 
multitasking cannot be more energy-efficient 
than the schedule without spatial multitasking 
if the jobs in J are linear-speedup jobs. 

Theorem 1

Schedule in (b): 
ü Less energy efficient
ü Better schedulability

Theorem 1 does not necessarily hold for 
nonlinear-speedup jobs. 

Lemma 2

§ To reduce energy consumption:
ü For linear-speedup jobs, 

execute them as fast as 
possible

ü For nonlinear-speedup jobs, 
try to assign the right 
number of SMs (𝒎𝒐𝒑𝒕) to 
them 



Framework (1/3)
§ Goals:

§ Minimize deadline misses
§ Maximize the opportunity to reduce energy consumption

§ Approach: 
§ A heuristic runtime scheduler:
Ø Improve deadline misses by exploiting spatial multitasking technique
ØReduce energy consumption by running each job with 𝑚/0, whenever possible

§ Two workers are created to parallelize the kernels 
ØMotivated by hyperthreading on CPU
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Framework (2/3)
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§ SM allocation policy:
§ The decision is made dynamically for each job

§ It is called when a new job arrives or a running job 
completes

§ When the GPU is idling: 
Ø Consider all the jobs that will arrive before 𝑓!,$(𝑚)
Ø Generate all feasible schedules
Ø Choose the schedule with the minimum predicted 

energy consumption
§ When the GPU is partially occupied:

Ø Decide which one is more energy efficient: 
o launch the job right away 
o or wait until the current running job completes 

execution



Framework (3/3)
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§ High-level idea of the scheduler:
§ generates the possible schedules
§ Then choose the one with minimum energy consumption and w/o deadline violation

§ Time complexity: 
O(nlogn)



Evaluation
§ Experiment Setup
§ NVIDIA Jetson AGX Xavier with Ubuntu 18.04 and CUDA 10.0 
Ø670 MHz GPU clock frequency
ØAll CPU cores are enabled

§ GPU power consumption is measured from the built-in power sensor

§ Scheduling Approaches
§ sBEET: 
Ø the proposed approach

§ FCFS, RM: 
Ø temporal-multitasking

§ STGM¹: 
Ø temporal-multitasking and spatial-multitasking
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Power Model Evaluation
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§ The average error is 5.93%
§ R2 score is 0.87



Overhead Measurement

§ The overhead comes from the decision-making of the scheduler
§ A taskset of total utilization of 1.0 is executed for 10 minutes
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üThe overhead is acceptable for our 
target embedded platform



Effect of Taskset Utilization
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§ To see the schedulability and energy 
consumption of different approaches when the 
system is overloaded

§ Taskset generation
§ 1,000 randomly-generated tasksets
§ Running for 10 secs on real hardware

üsBEET has the lowest deadline miss ratio

üWhen the utilization gets larger, the energy 
consumption of sBEET becomes the highest due 
to the use of spatial multitasking and sBEET has 
more completed jobs than others



Effect of Heavy/Light Task Ratio
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§ Heavy tasks are likely to have negative impact on 
schedulability

§ Task categorization
§ Heavy tasks: MMUL, Stereodisparity, DXTC
§ Light tasks: Hotspots, Pathfinder, BFS, the 

synthetic kernel

üsBEET is better at meeting the 
deadlines since the long blocking by 
heavy tasks can be avoided



Effect of Spatial Multitasking
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§ Focus on the energy efficiency w/ spatial-
multitasking

§ All the tasksets can pass the original STGM 
offline schedulability test which guarantees no 
deadline miss

üBoth have 0% deadline miss ratio

üsBEET can save up to 21% of the energy



Discussion
§ Shared memory resource contention

§ Co-scheduled kernels may experience additional timing interference due to contention on 
shared memory resources of the GPU

§ We did not observe any discernible slowdown:
ØThe target platform has a small number of SMs and a high memory bandwidth

§ Can be co-used with Fractional GPUs¹

§ Energy consumed by other hardware components
§ Including CPU, memory, etc.
§ It will be more challenging to optimize the energy consumption of the whole hardware
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Conclusion and Future Work
§ Conclusion

§ Our power and energy analysis shows that spatial multitasking on the GPU benefits 
schedulability, but may lead to energy inefficiency due to the energy consumed by idle SMs

§ The proposed runtime scheduler balances the schedulability and energy efficiency
§ We implemented the scheduler on NVIDIA Jetson AGX Xavier
§ Experimental results show that the proposed scheduler can achieve better energy efficiency in 

meeting tasks’ deadlines

§ Future work
§ Extend the current work to more powerful GPUs
§ Consider heterogeneous multi-GPU systems
§ Consider the energy consumption of the whole hardware
§ Extend our idea to other systems, e.g., DNN inference servers and autonomous driving
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