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Introduction

» GPU power management 1s important in CPS

» GPUs are designed for better performance, with dramatically increased power
consumption

* Benefits of GPU power management:
= Reliability, feasibility, scalability, etc.

* Partitioning the GPU can improve real-time performance and resource
efficiency

= Spatial multitasking partitions the GPU into computing units, so that multiple
kernels can run simultaneously
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Figure 1: Architecture and module power rails of NVIDIA Jetson AGX Xavier

= The GPU is rail-gated and clock-gated, but not SM level power-gated
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Related Work

= Temporal Multitasking on GPU — Prior works specifically for real-time systems
= Non-preemptive scheduling' 2: makes GPU access and blocking time predictable
= Preemptive scheduling® 4: decomposes big kernel into smaller segments
= GPU resources may be underutilized

= Spatial Multitasking on GPU?
= [t can reduce contention on computing resources between tasks
= [t may not lead to the most energy-efficient schedule

= Resource Allocation for GPU Energy Saving® ’
= Turns off idling resources (i.e., SMs)
= But SM-level power gating is not yet available even on the latest embedded GPUs

[1] G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor systems with GPUs. Real-Time Systems, 48:34—74, 05 2012

[2] H. Kim, P. Patel, S. Wang, and R. Rajkumar. A server-based approach for predictable GPU access control. RTCSA4, 2017

[3] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Rajkumar. RGEM: A responsive GPGPU execution model for runtime engines. R7SS, 2011
[4] H. Zhou, G. Tong, and C. Liu. GPES: a preemptive execution system for GPGPU computing. R7AS, 2015

[5] S. K. Saha, Y. Xiang, and H. Kim. STGM: Spatio-temporal GPU management for real-time tasks. R7CSA4, 2019

[6] S. Hong and H. Kim. An integrated GPU power and performance model. ACM SIGARCH, 2010

[7] P.-H. Wang, C.-L. Yang, Y.-M. Chen, and Y.-J. Cheng. Power gating strategies on GPUs. T4ACO, 2011
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Contributions

We proposed sBEET:
v' Real-time scheduling framework that Balances Energy Efficiency and Timeliness
of GPU kernels on embedded GPUs

= Derive a power and energy consumption analysis for GPU kernels scheduled w/ and w/o spatial
multitasking on the GPU

= Develop a runtime scheduler that balance the deadline misses and the energy consumption of non-
preemptive GPU kernels

= Implement the scheduler on NVIDIA Jetson AGX Xavier

= The proposed work outperforms the existing spatial multitasking approach in real-time
performance and energy consumption
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System Model

= System Model

= A GPU containing M SMs Memcpy .HZD Gl Memcpy ID2H Gan
= Single Memory Copy Engine S S
SR, 0007

= Task Model

..........................................................................................................................

T, = (G, Ty, Dy) ' - :
WCET, period, deadline GPU execution G{;(m)

= Job Model

= Each task 7; consists of a sequence of jobs J; ;

= Job are running exclusively on the assigned number
of SMs
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Power and Energy Analysis (1/5)

" Power model
= Power model: P = PS + p4 4 ptdle

= Forasetofjobs] =1{J1, /2, ..., Jn}:

n n
P=P5+ z PE(m;) + Pidle(M — z m;)
=1 =1

= For a taskset I', energy consumption in [t1, t2]:

E(ty,t,) = jt ps + zn: pd (Z xk(e) | | + piate (M - i i xf(t)>

K 0,7; is not active on SMy,
xi(t) = . .
1,1; is active on SM;,

l

1/12/22 Framework 7



Power and Energy Analysis (2/5)

* WCET and power consumption profiling
= Obtain power parameters for each application
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Figure 4: Profiling results of WCET and power consumption
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Power and Energy Analysis (3/5)

| mmul stereodisplarity hotspot dxtc

T

Figure 5: NormaliZed energy consumption in fime window

Linear-speedup (m°Pt = M)

Nonlinear-speedup (m°Pt < M)
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= Definition 1. (Mm°P?) The energy-
optimal number of SMs m°P? for a task t; is
defined as the number of SMs that leads to
the lowest energy consumption when it
executes 1n 1solation on the GPU during an
arbitrary time interval.



Power and Energy Analysis (4/5)

Theorem 1

. . . )
The schedule of a job set J with spatial
multitasking cannot be more energy-efficient
than the schedule without spatial multitasking
if the jobs in J are linear-speedup jobs.
- J
(T ‘: Task D, G¢(M) G! G%  Offset
i Consider two linear-speedup tasks: o 12 6 1 1 0
e 7 1 1 1 1
]1,1 J2a t] Job release/deadline-
v i Ty
(el) BB B () B @
" 7 "“1( Pz )
| W 7. ;
0 2 4 6 8 10 112 0 2 4 6 8 10 12

(a) Schedule w/o spatial multitasking
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(b) Schedule w/ spatial multitasking

Framework
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Schedule in (b):
v" Less energy efficient

,,,,,,,, "x Extra consumed

energy due to idle SMs
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Power and Energy Analysis (5/5)

Theorem 1 ~
The schedule of a job set J with spatial
multitasking cannot be more energy-efficient
than the schedule without spatial multitasking
if the jobs in J are linear-speedup jobs.

-

* To reduce energy consumption:
v' For linear-speedup jobs,

J

_____________________________ \ execute them as fast as
possible

Schedule in (b):
v’ Less energy efficient !
v’ Better schedulability !

____________________________

[ R —

v' For nonlinear-speedup jobs,
try to assign the right
number of SMs (m°P?) to

Lemma 2 them
[}heorem 1 does not necessarily hold for ]

-

nonlinear-speedup jobs.
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Framework (1/3)

= Goals:
* Minimize deadline misses
= Maximize the opportunity to reduce energy consumption

= Approach:
= A heuristic runtime scheduler:
» Improve deadline misses by exploiting spatial multitasking technique
> Reduce energy consumption by running each job with m°Pt whenever possible

= Two workers are created to parallelize the kernels
» Motivated by hyperthreading on CPU

1/12/22 Framework 12



T
Framework (2/3)

Algorithm 2 SM Allocation

. . 1: function ALLOCATION(J;,j, Jq,r)
= SM allocation policy: 2ty < current time
. . . . 3 if Jg - is nullptr then > = GPU is idling
= The decision is made dynamically for each job 4 form ¢ Mtoldo
] ) ; . . 5: m’ < min(m, m;¥")
= [tis called when a new job arrives or a running job 6 W {Jp | YD, (k ;é,f,,[) A (P p ? in),],-(m' }
7: SCHEDGENGE: ;. Jq.v M, [Erowy i 5l }], Q)
(u S ) 3 d(“;°mpute Eyprea = Eltnows fi,j(m')) by Eq. (5}
] 1e 1d11 . 9: end for
When the GPU is 1dhng ) <: 10: if no generated schedule is feasible then
» Consider all the jobs that will arrive before f; j(m) o e 00 the schedule with the minimum Epred
> Generate all feasible Schedules 12 endcii‘IOOSe the feasible schedule with the min. Epred
» Choose the schedule with the minimum predicted 15: return ;7 > the corresponding SM allocation for J; ;
\ energy consump tion / 16: else ( | zt ;he GPU is partially occupied
17: m' <+ min(|Savai|, m;
. . - 1. 18: if fij(m') > fq,r + G5 (M) then
/= When the GPU is partially occupied: ) 19: 1 return ) b Do not run J; ; in parallel with J,,,
: : . : . 20: else
» Decide which one is more energy efficient: <7 21 g;gj « G{Jk,& | vp:](Tk 4 T,,[) /\ (n}p (< f)]J (8,))}
: : 00 CHERGENCETE T (e e O
o launch the -]Ob I'lght away 23! if the generatedjsch(édule is not feasitjﬂe then !
o or wait until the current running job completes ;‘; else"e‘“"‘ 0
k execution / 26: return S;’ J;g > the corresp. SM allocation
275 end if
28: end if
29: end if

30: end function
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F r a m eWO I’k (3 / 3 ) Table II: Taskset in Example 2

Task D; G¢(M) GP G Offset
Ty 14 6 1 1 0

= High-level 1dea of the scheduler: O T T S

3 10 1 1 1 2

= generates the possible schedules
= Then choose the one with minimum energy consumption and w/o deadline violation

hi O Js1 1l Job release/deadline
75 eadline

( )

0 6 8 10 12 14 16 18

* Time complexity:
O(nlogn)

7, [ Deadline
+ miss

//

(b) Case 2 (d) Case 4
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e
Evaluation

= Experiment Setup
= NVIDIA Jetson AGX Xavier with Ubuntu 18.04 and CUDA 10.0
» 670 MHz GPU clock frequency
» All CPU cores are enabled

= GPU power consumption is measured from the built-in power sensor

= Scheduling Approaches
= sSBEET:
» the proposed approach
= FCFS, RM:
» temporal-multitasking
= STGM*:
» temporal-multitasking and spatial-multitasking

[1] S. K. Saha, Y. Xiang, and H. Kim. STGM: Spatio-temporal GPU management for real-time tasks. RTCSA4, 2019
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Overhead Measurement

» The overhead comes from the decision-making of the scheduler

= A taskset of total utilization of 1.0 is executed for 10 minutes

1.4+ 251
e 3y
8 0.8 g 15 " N Ve N
% 0.61 g 104 H ﬁ %l |
80 g S 5 jl> v’ The overhead is acceptable for our
0.0 é tedl 2 0] Ll 1] target embedded platform
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
Number of tasks Number of tasks . )
(a) Overhead of Alg. H (b) Overhead of Alg. @ and 3

Figure 7: Runtime overhead w.r.t number of tasks
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(b) Overall energy consumption
Figure 8: Runtime results w.r.t. the utilization of taskset
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= Running for 10 secs on real hardware

= 1,000 randomly-generated tasksets
consumption of SBEET becomes the highest due

to the use of spatial multitasking and SBEET has

consumption of different approaches when the
more completed jobs than others

system 1s overloaded

Effect of Taskset Utilization
= To see the schedulability and energy

= Taskset generation

v sBEET has the lowest deadline miss ratio
v When the utilization gets larger, the energy

a

Evaluation
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Effect of Heavy/Light Task Ratio

» Heavy tasks are likely to have negative impacton [ N
schedulability v sBEET is better at meeting the
= Task categorization deadlines since the long blocking by
, , heavy tasks can be avoided
= Heavy tasks: MMUL, Stereodisparity, DXTC
= Light tasks: Hotspots, Pathfinder, BFS, the ) ’

synthetic kernel
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Figure 9: Runtime deadline miss ratio of light tasks w.r.t. ratio
of heavy tasks
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Effect of Spatial Multitasking

. )

= Focus on the energy efficiency w/ spatial-

multitasking v'Both have 0% deadline miss ratio

= All the tasksets can pass the original STGM
offline schedulability test which guarantees no

v SBEET can save up to 21% of the energy

deadline miss < y
B8 1
a1 r

Number of tasks

Figure 10: Comparison of runtime energy consumption of
STGM and the proposed work

1/12/22 Evaluation 21



L
Discussion

» Shared memory resource contention

= Co-scheduled kernels may experience additional timing interference due to contention on
shared memory resources of the GPU

= We did not observe any discernible slowdown:
» The target platform has a small number of SMs and a high memory bandwidth
= Can be co-used with Fractional GPUs’

* Energy consumed by other hardware components
* Including CPU, memory, etc.
= [t will be more challenging to optimize the energy consumption of the whole hardware

[1] S. Jain, I. Baek, S. Wang, and R. Rajkumar. Fractional GPUs: Software-based compute and memory bandwidth reservation for GPUs. RTAS, 2019
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Conclusion and Future Work

= Conclusion

= Our power and energy analysis shows that spatial multitasking on the GPU benefits
schedulability, but may lead to energy inefficiency due to the energy consumed by idle SMs

= The proposed runtime scheduler balances the schedulability and energy efficiency
= We implemented the scheduler on NVIDIA Jetson AGX Xavier

= Experimental results show that the proposed scheduler can achieve better energy efficiency in
meeting tasks’ deadlines

" Future work
= Extend the current work to more powerful GPUs
= Consider heterogeneous multi-GPU systems
= Consider the energy consumption of the whole hardware
= Extend our idea to other systems, e.g., DNN inference servers and autonomous driving
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